Holocene global mean surface temperature, a multi-method reconstruction approach
Tóm tắt
Từ khóa
Tài liệu tham khảo
PAGES 2k Consortium. Consistent multi-decadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 12, 643–649 (2019).
Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198 (2013).
Brierley, C. et al. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations. Clim. Past Disc., https://doi.org/10.5194/cp-2019-168 (2020).
Kaufman, D. et al. A global database of Holocene paleo-temperature records. Sci. Data 7, 115.
PAGES 2k Consortium. Continental-scale temperature variability during the past two millennia. Nat. Geosci 6, 339–346 (2013).
Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl. Acad. Sci. 105, 13252–13257 (2008).
Routson, C. C. et al. Mid-latitude net precipitation decreased with Arctic warming during the Holocene. Nature 568, 83–87 (2019).
Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J. & Werner, J. P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571, 550–554 (2019).
PAGES 2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 4, 170088 (2017).
World Meteorological Organization. Global Climate in 2015-2019. https://library.wmo.int/doc_num.php?explnum_id=10251 (2020).
IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013).
Berger, W. H. & Heath, G. R. Vertical mixing in pelagic sediments. J. Mar. Res. 26, 134–143 (1968).
Glew, J. R., Smol, J. P. & Last, W. M. Sediment Core Collection and Extrusion. In Tracking Environmental Change Using Lake Sediments: Basin Analysis, Coring, and Chronological Techniques (eds. Last, W. M. & Smol, J. P.) 73–105 (Springer Netherlands, 2001).
Harrison, S. P. et al. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Clim. Change 5, 735–743 (2015).
Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).
Snyder, C. W. Evolution of global temperature over the past two million years. Nature 538, 226–228 (2016).
Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92 (2018).
Birks, H. J. B., Heiri, O., Seppä, H. & Bjune, A. E. Strengths and weaknesses of quantitative climate reconstructions based on late-Quaternary biological proxies. Open Ecol. J. 3, 68–110 (2011).
Juggins, S. Quantitative reconstructions in palaeolimnology: new paradigm or sick science? Quat. Sci. Rev. 64, 20–32 (2013).
Sweeney, J., Salter-Townshend, M., Edwards, T., Buck, C. E., Parnell, A. C. Statistical challenges in estimating past climate changes. WIREs Compt. Stat. 10, e1437 (2018).
Heikkilä, M. & Seppä, H. A 11,000 yr palaeotemperature reconstruction from the southern boreal zone in Finland. Quat. Sci. Rev. 22, 541–554 (2003).
Shanahan, T. M., Hughen, K. A. & Van Mooy, B. A. S. Temperature sensitivity of branched and isoprenoid GDGTs in Arctic lakes. Org. Geochem. 64, 119–128 (2013).
Bakker, P. et al. Temperature trends during the present and last interglacial periods – a multi-model-data comparison. Quat. Sci. Rev. 99, 224–243 (2014).
Davis, B. The pollen-climate methods intercomparison project (PC-MIP). Past Glob. Chang. Mag 25, 161–161 (2017).
Poli, P. et al. ERA-20C: An atmospheric reanalysis of the Twentieth Century. J. Clim. 29, 4083–4097 (2016).
Comboul, M. et al. A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives. Clim. Past 10, 825–841 (2014).
McKay, N. P., Kaufman, D. S., Routson, C. C., Erb, M. P. & Zander, P. D. The onset and rate of Holocene Neoglacial cooling in the Arctic. Geophys. Res. Lett. 45, 12,487–12,496 (2018).
Sommer, P. S., Davis, B. A. S., Chevalier, M. & Tipton, J. R. Pyleogrid - A probabilistic approach for gridding paleo climate data. In: Sommer, P. S. Software and Numerical Tools for Paleoclimate Analysis. PhD Thesis. University of Lausanne. pp. 83–117, https://doi.org/10.5281/zenodo.3757356 (2020).
Gelman, A. et al. Bayesian Data Analysis. (Chapman and Hall/CRC, 2013).
Servén, D., Brummitt, C. & Abedi, H. Dswah/Pygam: V0.8.0. Zenodo, https://doi.org/10.5281/ZENODO.1476122 (2018).
Hanhijärvi, S., Tingley, M. P. & Korhola, A. Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic region over the last 2,000 years. Clim. Dyn. 41, 2039–2060 (2013).
Kaufman, D. S. et al. NOAA/WDS Paleoclimatology - Temperature 12k Database. NOAA National Centers for Environmental Information, https://doi.org/10.25921/4RY2-G808 (2020).
Kaufman, D. S. et al. Holocene global mean surface temperature: A multi-method reconstruction approach. figshare https://doi.org/10.6084/m9.figshare.c.4796823 (2020).
Kaufman, D.S. et al. NOAA/WDS Paleoclimatology - Holocene global mean surface temperature. NOAA National Centers for Environmental Information, https://doi.org/10.25921/vzys-1280 (2020).