Holocene global mean surface temperature, a multi-method reconstruction approach

Scientific data - Tập 7 Số 1
Darrell S. Kaufman1, Nicholas P. McKay1, Cody Routson1, Michael P. Erb1, Christoph Dätwyler2, Philipp S. Sommer3, Oliver Heiri4, Basil A.S. Davis3
1Northern Arizona University, School of Earth and Sustainability, Flagstaff, AZ, 86011, USA
2University of Bern, Institute of Geography and Oeschger Centre for Climate Change Research, Bern, 3012, Switzerland
3University of Lausanne, Institute of Earth Surface Dynamics, Lausanne, 1015, Switzerland
4University of Basel, Department of Environmental Sciences, Basel, 4056, Switzerland

Tóm tắt

AbstractAn extensive new multi-proxy database of paleo-temperature time series (Temperature 12k) enables a more robust analysis of global mean surface temperature (GMST) and associated uncertainties than was previously available. We applied five different statistical methods to reconstruct the GMST of the past 12,000 years (Holocene). Each method used different approaches to averaging the globally distributed time series and to characterizing various sources of uncertainty, including proxy temperature, chronology and methodological choices. The results were aggregated to generate a multi-method ensemble of plausible GMST and latitudinal-zone temperature reconstructions with a realistic range of uncertainties. The warmest 200-year-long interval took place around 6500 years ago when GMST was 0.7 °C (0.3, 1.8) warmer than the 19th Century (median, 5th, 95th percentiles). Following the Holocene global thermal maximum, GMST cooled at an average rate −0.08 °C per 1000 years (−0.24, −0.05). The multi-method ensembles and the code used to generate them highlight the utility of the Temperature 12k database, and they are now available for future use by studies aimed at understanding Holocene evolution of the Earth system.

Từ khóa


Tài liệu tham khảo

PAGES 2k Consortium. Consistent multi-decadal variability in global temperature reconstructions and simulations over the Common Era. Nat. Geosci. 12, 643–649 (2019).

Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. A reconstruction of regional and global temperature for the past 11,300 years. Science 339, 1198 (2013).

Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl. Acad. Sci. 111, E3501–E3505 (2014).

Brierley, C. et al. Large-scale features and evaluation of the PMIP4-CMIP6 midHolocene simulations. Clim. Past Disc., https://doi.org/10.5194/cp-2019-168 (2020).

Kaufman, D. et al. A global database of Holocene paleo-temperature records. Sci. Data 7, 115.

PAGES 2k Consortium. Continental-scale temperature variability during the past two millennia. Nat. Geosci 6, 339–346 (2013).

Mann, M. E. et al. Proxy-based reconstructions of hemispheric and global surface temperature variations over the past two millennia. Proc. Natl. Acad. Sci. 105, 13252–13257 (2008).

Routson, C. C. et al. Mid-latitude net precipitation decreased with Arctic warming during the Holocene. Nature 568, 83–87 (2019).

Neukom, R., Steiger, N., Gómez-Navarro, J. J., Wang, J. & Werner, J. P. No evidence for globally coherent warm and cold periods over the preindustrial Common Era. Nature 571, 550–554 (2019).

PAGES 2k Consortium. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 4, 170088 (2017).

World Meteorological Organization. Global Climate in 2015-2019. https://library.wmo.int/doc_num.php?explnum_id=10251 (2020).

IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. (Cambridge University Press, 2013).

Berger, W. H. & Heath, G. R. Vertical mixing in pelagic sediments. J. Mar. Res. 26, 134–143 (1968).

Glew, J. R., Smol, J. P. & Last, W. M. Sediment Core Collection and Extrusion. In Tracking Environmental Change Using Lake Sediments: Basin Analysis, Coring, and Chronological Techniques (eds. Last, W. M. & Smol, J. P.) 73–105 (Springer Netherlands, 2001).

Harrison, S. P. et al. Evaluation of CMIP5 palaeo-simulations to improve climate projections. Nat. Clim. Change 5, 735–743 (2015).

Shakun, J. D. et al. Global warming preceded by increasing carbon dioxide concentrations during the last deglaciation. Nature 484, 49–54 (2012).

Snyder, C. W. Evolution of global temperature over the past two million years. Nature 538, 226–228 (2016).

Marsicek, J., Shuman, B. N., Bartlein, P. J., Shafer, S. L. & Brewer, S. Reconciling divergent trends and millennial variations in Holocene temperatures. Nature 554, 92 (2018).

Birks, H. J. B., Heiri, O., Seppä, H. & Bjune, A. E. Strengths and weaknesses of quantitative climate reconstructions based on late-Quaternary biological proxies. Open Ecol. J. 3, 68–110 (2011).

Juggins, S. Quantitative reconstructions in palaeolimnology: new paradigm or sick science? Quat. Sci. Rev. 64, 20–32 (2013).

Sweeney, J., Salter-Townshend, M., Edwards, T., Buck, C. E.,  Parnell, A. C. Statistical challenges in estimating past climate changes. WIREs Compt. Stat. 10, e1437 (2018).

Heikkilä, M. & Seppä, H. A 11,000 yr palaeotemperature reconstruction from the southern boreal zone in Finland. Quat. Sci. Rev. 22, 541–554 (2003).

Shanahan, T. M., Hughen, K. A. & Van Mooy, B. A. S. Temperature sensitivity of branched and isoprenoid GDGTs in Arctic lakes. Org. Geochem. 64, 119–128 (2013).

Bakker, P. et al. Temperature trends during the present and last interglacial periods – a multi-model-data comparison. Quat. Sci. Rev. 99, 224–243 (2014).

Davis, B. The pollen-climate methods intercomparison project (PC-MIP). Past Glob. Chang. Mag 25, 161–161 (2017).

Poli, P. et al. ERA-20C: An atmospheric reanalysis of the Twentieth Century. J. Clim. 29, 4083–4097 (2016).

Comboul, M. et al. A probabilistic model of chronological errors in layer-counted climate proxies: applications to annually banded coral archives. Clim. Past 10, 825–841 (2014).

McKay, N. P., Kaufman, D. S., Routson, C. C., Erb, M. P. & Zander, P. D. The onset and rate of Holocene Neoglacial cooling in the Arctic. Geophys. Res. Lett. 45, 12,487–12,496 (2018).

Sommer, P. S., Davis, B. A. S., Chevalier, M. & Tipton, J. R. Pyleogrid - A probabilistic approach for gridding paleo climate data. In: Sommer, P. S. Software and Numerical Tools for Paleoclimate Analysis. PhD Thesis. University of Lausanne. pp. 83–117, https://doi.org/10.5281/zenodo.3757356 (2020).

Gelman, A. et al. Bayesian Data Analysis. (Chapman and Hall/CRC, 2013).

Servén, D., Brummitt, C. & Abedi, H. Dswah/Pygam: V0.8.0. Zenodo, https://doi.org/10.5281/ZENODO.1476122 (2018).

von Storch, H. et al. Reconstructing past climate from noisy data. Science 306, 679–682 (2004).

Hanhijärvi, S., Tingley, M. P. & Korhola, A. Pairwise comparisons to reconstruct mean temperature in the Arctic Atlantic region over the last 2,000 years. Clim. Dyn. 41, 2039–2060 (2013).

Kaufman, D. S. et al. NOAA/WDS Paleoclimatology - Temperature 12k Database. NOAA National Centers for Environmental Information, https://doi.org/10.25921/4RY2-G808 (2020).

Kaufman, D. S. et al. Holocene global mean surface temperature: A multi-method reconstruction approach. figshare https://doi.org/10.6084/m9.figshare.c.4796823 (2020).

Kaufman, D.S. et al. NOAA/WDS Paleoclimatology - Holocene global mean surface temperature. NOAA National Centers for Environmental Information, https://doi.org/10.25921/vzys-1280 (2020).

Routson, C., McKay, N., Sommer, P., Dätwyler, C. & Erb, M. Temperature12k: Analysis and plotting code for Temp12k analysis paper (Version 1.2.0). Zenodo, https://doi.org/10.5281/zenodo.3888590 (2020).