Hollow-core photonic crystal fibers for Power-over-Fiber systems

Optical Fiber Technology - Tập 73 - Trang 103041 - 2022
Jonas H. Osório1, Joao B. Rosolem2, Fabio R. Bassan2, Foued Amrani3, Frédéric Gérôme3, Fetah Benabid3, Cristiano M.B. Cordeiro1
1Institute of Physics “Gleb Wataghin”, University of Campinas, UNICAMP, Campinas 13083-859, Brazil
2CPQD – Research and Development Center in Telecommunications, Campinas 13086-902, Brazil
3GPPMM Group, XLIM Institute, University of Limoges, Limoges 87060, France

Tài liệu tham khảo

Birks, 1995, Full 2-D photonic bandgaps in silica/air structures, Electron. Lett., 31, 1941, 10.1049/el:19951306 Couny, 2007, Generation and photonic guidance of multi-octave optical frequency combs, Science, 318, 1118, 10.1126/science.1149091 Wang, 2011, Low loss broadband transmission in hypocycloid-core Kagome hollow-core photonic crystal fiber, Opt. Lett., 36, 669, 10.1364/OL.36.000669 J. H. Osório, F. Amrani, F. Delahaye, A. Dhaybi, K. Vasko, F. Giovanardi, D. Vandembroucq, G. Tessier, L. Vincetti, B. Debord, F. Gérôme, F. Benabid, “Hollow-core fibers with reduced surface roughness and ultralow loss in the short-wavelength range,” arXiv:2207.11090 (2022). Amrani, 2021, Low-loss single-mode hybrid-lattice hollow-core photonic-crystal fibre, Light Sci. Appl., 10, 7, 10.1038/s41377-020-00457-7 Jasion, 2022, 0.174 dB/km hollow core double nested antiresonant nodeless fiber (DNANF), 1 Chafer, 2022, Near- and middle-ultraviolet reconfigurable Raman source using a record-low UV/visible transmission loss inhibited-coupling hollow-core fiber, Opt. Laser Technol., 147, 10.1016/j.optlastec.2021.107678 Poggiolini, 2022, Opportunities and challenges for long-distance transmission in hollow-core fibres, J. Lightwave Technol., 40, 1605, 10.1109/JLT.2021.3140114 Debord, 2013, Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss, Opt. Express, 21, 28597, 10.1364/OE.21.028597 Debord, 2015, 2.6 mJ energy and 81 GW peak power femtosecond laser-pulse delivery and spectral broadening in inhibited coupling Kagome fiber Hädrich, 2016, Scalability of components for kW-level average power few-cycle lasers, Appl. Opt., 55, 1636, 10.1364/AO.55.001636 Mulvad, 2022, Kilowatt-average-power single-mode laser light transmission over kilometre-scale hollow-core fibre, Nat. Photonics, 16, 448, 10.1038/s41566-022-01000-3 Rosolem, 2017, Power-over-fiber applications for telecommunications and for electric utilities, IntechOpen Seo, 2003, Evaluation of high-power endurance in optical fiber links, Furukawa Rev., 24, 17 López-Cardona, 2021, Power over fiber in C-RAN with low power sleep mode remote nodes using SMF, J. Lightwave Technol., 39, 4951, 10.1109/JLT.2021.3080631 Al-Zubaidi, 2021, Optically powered radio-over-fiber systems in support of 5G cellular networks and IoT, J. Lightwave Technol., 39, 4262, 10.1109/JLT.2021.3074193 Vázquez, 2019, Multicore fiber scenarios supporting power over fiber in radio over fiber systems, IEEE Access, 7, 158409, 10.1109/ACCESS.2019.2950599 López-Cardona, 2021, Power-over-fiber in a 10 km long multicore fiber link within a 5G fronthaul scenario, Opt. Lett., 46, 5348, 10.1364/OL.439105 Yang, 2022, Optically powered 5G WDM fronthaul network with weakly-coupled multicore fiber, Opt. Express, 30, 19797 Li, 2021, A large-core microstructure optical fiber for co-transmission of signal and power, J. Lightwave Technol., 39, 4511, 10.1109/JLT.2021.3073468 López-Cardona, 2021, Optically feeding 1.75W with 100 m MMF in efficient C-RAN front-hauls with sleep modes, J. Lightwave Technol., 39, 7948, 10.1109/JLT.2021.3078848 Matsuura, 2020, 150-W power-over-fiber using double-clad fibers, J. Lightwave Technol., 38, 401, 10.1109/JLT.2019.2948777 Matsuura, 2021, Over 40-W electric power and optical data transmission using an optical fiber, IEEE Trans. Power Electron., 36, 4532, 10.1109/TPEL.2020.3027551 Osório, 2022, Hollow-core photonic crystal fibers as platforms for power-over-fiber applications Algora, 2022, Beaming power: photovoltaic laser power converters for power-by-light, Joule, 6, 340, 10.1016/j.joule.2021.11.014 Debord, 2017, Ultralow transmission loss in inhibited-coupling guiding hollow fibers, Optica, 4, 209, 10.1364/OPTICA.4.000209 Vincetti, 2016, Empirical formulas for calculating loss in hollow core tube lattice fibers, Opt. Express, 24, 10313, 10.1364/OE.24.010313 Broadcom Application Notes, Optical Power Components Optimizing Optical Power Converter Output, Available in https://docs.broadcom.com/doc/AFBR-POCxxxL-AN. Shan, 2014, Performance of series connected GaAs photovoltaic converters under multimode optical fiber illumination, Adv. OptoElectron., 10.1155/2014/824181 Delahaye, 2021, Double-clad hollow-core photonic crystal fiber for nonlinear optical imaging Osório, 2019, Tailoring modal properties of inhibited-coupling guiding fibers by cladding modification, Sci. Rep., 9, 1376, 10.1038/s41598-018-37948-y Chafer, 2019, 1-km hollow-core fiber with loss at the silica Rayleigh limit in the green spectral region, IEEE Photonics Technol. Lett., 31, 9, 10.1109/LPT.2019.2904341 Wang, 2021, Ultralow-loss fusion splicing between negative curvature hollow-core fibers and conventional SMFs with a reverse-tapering method, Opt. Express, 29, 22470, 10.1364/OE.432147 Suslov, 2021, Low loss and high performance interconnection between standard single-mode fiber and antiresonant hollow-core fiber, Sci. Rep., 11, 8799, 10.1038/s41598-021-88065-2 Hong, 2020, Multi-band direct-detetion transmission over an ultrawide bandwidth hollow-core NANF, J. Lightwave Technol., 38, 2849, 10.1109/JLT.2020.2967581 GLOphotonics. PMC Patchcord. Available at https://www.glophotonics.fr/index.php/pmc-patchcord.html.