Wang, 2013, J. Am. Chem. Soc., 135, 10703, 10.1021/ja403101r
Zhu, 2012, Adv. Mater., 24, 2326, 10.1002/adma.201104951
Zhang, 2016, Nano Lett., 16, 5037, 10.1021/acs.nanolett.6b01825
Chen, 2016, Angew. Chem., Int. Ed., 55, 9021, 10.1002/anie.201602592
Hong, 2015, J. Am. Chem. Soc., 137, 1444, 10.1021/ja513120u
Liu, 2016, Energy Environ. Sci., 9, 898, 10.1039/C5EE03779D
Zalineeva, 2014, J. Am. Chem. Soc., 136, 3937, 10.1021/ja412429f
Hong, 2012, J. Am. Chem. Soc., 134, 18165, 10.1021/ja3076132
Kim, 2014, Electrochem. Commun., 46, 36, 10.1016/j.elecom.2014.06.007
Jiang, 2015, ACS Appl. Mater. Interfaces, 7, 15061, 10.1021/acsami.5b04391
Liu, 2013, Adv. Funct. Mater., 23, 1289, 10.1002/adfm.201202225
Lu, 2012, ACS Catal., 2, 84, 10.1021/cs200538g
Hong, 2011, Chem. Commun., 47, 5160, 10.1039/c1cc10903k
Bin, 2016, Chem. – Eur. J., 22, 16642, 10.1002/chem.201601544
Nguyen, 2012, Appl. Catal., B, 113–114, 261, 10.1016/j.apcatb.2011.11.046
Peng, 2015, J. Power Sources, 278, 69, 10.1016/j.jpowsour.2014.12.056
Lou, 2017, ACS Nano, 11, 968, 10.1021/acsnano.6b07581
Zhang, 2016, Chem. Soc. Rev., 45, 3916, 10.1039/C5CS00958H
Li, 2014, J. Power Sources, 247, 213, 10.1016/j.jpowsour.2013.08.088
Bin, 2015, J. Mater. Chem. A, 3, 14001, 10.1039/C5TA02829A
Huang, 2016, Nanoscale, 8, 14705, 10.1039/C6NR04927C
Song, 2016, Int. J. Hydrogen Energy, 41, 1645, 10.1016/j.ijhydene.2015.11.021
Zhao, 2015, J. Am. Chem. Soc., 137, 2804, 10.1021/ja511596c
Shi, 2016, ACS Appl. Mater. Interfaces, 8, 4739, 10.1021/acsami.5b12407
Fu, 2015, Nano Energy, 12, 824, 10.1016/j.nanoen.2015.01.041
Hsia, 2016, Chem. Mater., 28, 3073, 10.1021/acs.chemmater.6b00377
Liu, 2016, Nano Res., 9, 1590, 10.1007/s12274-016-1053-6
Van Thuan, 2015, J. Catal., 329, 144, 10.1016/j.jcat.2015.05.001
Liu, 2012, J. Am. Chem. Soc., 134, 11602, 10.1021/ja302518n
Choi, 2012, Langmuir, 28, 6670, 10.1021/la202569q
Du, 2014, J. Am. Chem. Soc., 136, 10862, 10.1021/ja505456w
Guo, 2013, Nanoscale, 5, 12582, 10.1039/c3nr04304e
Valiollahi, 2016, Electrochim. Acta, 191, 230, 10.1016/j.electacta.2016.01.082
Fu, 2014, Nano Res., 7, 1205, 10.1007/s12274-014-0483-2
Zhang, 2016, Chem. Mater., 28, 4447, 10.1021/acs.chemmater.6b01642
Huang, 2015, Small, 11, 5214, 10.1002/smll.201501220
Yu, 2016, Electrochim. Acta, 213, 565, 10.1016/j.electacta.2016.07.141
Xu, 2017, J. Power Sources, 356, 27, 10.1016/j.jpowsour.2017.04.070
Zhang, 2010, J. Power Sources, 195, 1103, 10.1016/j.jpowsour.2009.08.054
Hu, 2012, Adv. Mater., 24, 5493, 10.1002/adma.201200498
Jiang, 2016, Angew. Chem., Int. Ed., 55, 10037, 10.1002/anie.201603967
Londono-Calderon, 2016, Langmuir, 32, 7572, 10.1021/acs.langmuir.6b01888
Tai, 2011, Electrochim. Acta, 56, 3115, 10.1016/j.electacta.2011.01.071
Tsao, 2014, J. Am. Chem. Soc., 136, 396, 10.1021/ja410663g
Xu, 2017, Int. J. Hydrogen Energy, 42, 11229, 10.1016/j.ijhydene.2017.03.023
Zhang, 2015, Nanoscale, 7, 12445, 10.1039/C5NR02713F
Ataee-Esfahani, 2013, Angew. Chem., Int. Ed., 52, 13611, 10.1002/anie.201307126
Jin, 2016, Int. J. Hydrogen Energy, 41, 16851, 10.1016/j.ijhydene.2016.06.253
Malgras, 2016, Adv. Mater., 28, 993, 10.1002/adma.201502593
Feng, 2010, Electrochim. Acta, 55, 6991, 10.1016/j.electacta.2010.06.080
Zhang, 2017, Adv. Mater., 29, 1603774, 10.1002/adma.201603774
Li, 2016, Energy Environ. Sci., 9, 3097, 10.1039/C6EE02229D
Dash, 2015, Electrochim. Acta, 180, 339, 10.1016/j.electacta.2015.07.020
Huang, 2017, Nanoscale, 9, 201, 10.1039/C6NR07036A
Hong, 2015, Energy Environ. Sci., 8, 2910, 10.1039/C5EE01988E
Xu, 2017, Appl. Surf. Sci., 416, 191, 10.1016/j.apsusc.2017.04.160
Zhong, 2016, Catal. Sci. Technol., 6, 5397, 10.1039/C6CY00140H
Wang, 2013, J. Am. Chem. Soc., 135, 16762, 10.1021/ja407773x