Hole quality in longitudinal–torsional coupled ultrasonic vibration assisted drilling of carbon fiber reinforced plastics

Frontiers of Mechanical Engineering - Tập 15 - Trang 538-546 - 2020
Guofeng Ma1, Renke Kang1, Zhigang Dong1, Sen Yin1, Yan Bao1, Dongming Guo1
1Key Laboratory for Precision and Non-traditional Machining of Ministry of Education, Dalian University of Technology, Dalian, China

Tóm tắt

Carbon fiber reinforced plastic (CFRP) composites are extremely attractive in the manufacturing of structural and functional components in the aircraft manufacturing field due to their outstanding properties, such as good fatigue resistance, high specific stiffness/strength, and good shock absorption. However, because of their inherent anisotropy, low interlamination strength, and abrasive characteristics, CFRP composites are considered difficult-to-cut materials and are prone to generating serious hole defects, such as delamination, tearing, and burrs. The advanced longitudinal–torsional coupled ultrasonic vibration assisted drilling (LTC-UAD) method has a potential application for drilling CFRP composites. At present, LTC-UAD is mainly adopted for drilling metal materials and rarely for CFRP. Therefore, this study analyzes the kinematic characteristics and the influence of feed rate on the drilling performance of LTC-UAD. Experimental results indicate that LTC-UAD can reduce the thrust force by 39% compared to conventional drilling. Furthermore, LTC-UAD can decrease the delamination and burr factors and improve the surface quality of the hole wall. Thus, LTC-UAD is an applicable process method for drilling components made with CFRP composites.

Tài liệu tham khảo

Chung D D L. Composite Materials: Science and Applications. 2nd ed. London: Springer, 2010, 30–32 Srivatsan T S. A review of: “Fundamentals of Composites Manufacturing: Materials, Methods and Applications” by A. Brent Strong. Materials and Manufacturing Processes, 1995, 10(5): 1121–1122 Davim J P, Reis P. Drilling carbon fiber reinforced plastics manufactured by autoclave-experimental and statistical study. Materials & Design, 2003, 24(5): 315–324 Singh A P, Sharma M, Singh I. A review of modeling and control during drilling of fiber reinforced plastic composites. Composites Part B, Engineering, 2013, 47: 118–125 Prabu V A, Kumaran S T, Uthayakumar M. Performance evaluation of abrasive water jet machining on banana fiber reinforced polyester composite. Journal of Natural Fibers, 2017, 14(3): 450–457 Hocheng H, Tsao C C. Effects of special drill tools on drillinginduced delamination of composite materials. International Journal of Machine Tools and Manufacture, 2006, 46(12–13): 1403–1416 Sorrentino L, Turchetta S, Bellini C. In process monitoring of cutting temperature during the drilling of FRP laminate. Composite Structures, 2017, 168: 549–561 Li C, Xu J Y, Chen M, et al. Tool wear processes in low frequency vibration assisted drilling of CFRP/Ti6Al4V stacks with forced aircooling. Wear, 2019, 426–427: 1616–1623 Xu J, Mansori M E. Experimental studies on the cutting characteristics of hybrid CFRP/Ti stacks. Procedia Manufacturing, 2016, 5: 270–281 Liu D F, Tang Y J, Cong W L. A review of mechanical drilling for composite laminates. Composite Structures, 2012, 94(4): 1265–1279 Geng D X, Liu Y H, Shao Z Y, et al. Delamination formation, evaluation and suppression during drilling of composite laminates: A review. Composite Structures, 2019, 216: 168–186 Makhdum F, Jennings L T, Roy A, et al. Cutting forces in ultrasonically assisted drilling of carbon fiber reinforced plastics. Journal of Physics: Conference Series, 2012, 382: 012019 Lotfi M, Amini S. Experimental and numerical study of ultrasonically- assisted drilling. Ultrasonics, 2017, 75: 185–193 Debnath K, Singh I, Dvivedi A. Rotary mode ultrasonic drilling of glass fiber-reinforced epoxy laminates. Journal of Composite Materials, 2015, 49(8): 949–963 Phadnis V A, Makhdum F, Roy A, et al. Experimental and numerical investigations in conventional and ultrasonically assisted drilling of CFRP laminate. Procedia CIRP, 2012, 1: 455–459 Arul S, Vijayaraghavan L, Malhotra S K, et al. The effect of vibratory drilling on hole quality in polymeric composites. International Journal of Machine Tools and Manufacture, 2006, 46(3–4): 252–259 Makhdum F, Phadnis V A, Roy A, et al. Effect of ultrasonicallyassisted drilling on carbon-fiber-reinforced plastics. Journal of Sound and Vibration, 2014, 333(23): 5939–5952 Sanda A, Arriola I, Garcia Navas V, et al. Ultrasonically assisted drilling of carbon fiber reinforced plastics and Ti6Al4V. Journal of Manufacturing Processes, 2016, 22: 169–176 Xu W X, Zhang L C. On the mechanics and material removal mechanisms of vibration assisted cutting of unidirectional fiberreinforced polymer composites. International Journal of Machine Tools and Manufacture, 2014, 80–81: 1–10 Geng D X, Zhang D Y, Li Z, et al. Feasibility study of ultrasonic elliptical vibration-assisted reaming of carbon fiber reinforced plastics/titanium alloy stacks. Ultrasonics, 2017, 75: 80–90 Liu J, Zhang D Y, Qin L G, et al. Feasibility study of the rotary ultrasonic elliptical machining of carbon fiber reinforced plastics (CFRP). International Journal of Machine Tools and Manufacture, 2012, 53(1): 141–150 Amini S, Soleimani M, Paktinat H. Effect of longitudinal-torsional vibration in ultrasonic-assisted drilling. Materials and Manufacturing Processes, 2017, 32(6): 616–622 Liu S, Shan X B, Cao W, et al. A longitudinal-torsional composite ultrasonic vibrator with thread grooves. Ceramics International, 2017, 43: S214–S220 Niu Y, Jiao F, Zhao B, et al. Multiobjective optimization of processing parameters in longitudinal-torsion ultrasonic assisted milling of Ti-6Al-4V. International Journal of Advanced Manufacturing Technology, 2017, 93(9–12): 4345–4356 Wang J J, Feng P F, Zhang J, et al. Reducing cutting force in rotary ultrasonic drilling of ceramic matrix composites with longitudinaltorsional coupled vibration. Manufacturing Letters, 2018, 18: 1–5 Paktinat H, Amini S. Numerical and experimental studies of longitudinal and longitudinal-torsional vibrations in drilling of AISI 1045. International Journal of Advanced Manufacturing Technology, 2018, 94: 2577–2592 Wang F J, Cheng D, Zhao M, et al. Influence of cooling air direction on tool wear and hole quality in CFRP drilling. Acta Materiae Compositae Sinica, 2019, 36(2): 410–417 (in Chinese) Sadek A, Attia M H, Meshreki M, et al. Characterization and optimization of vibration-assisted drilling of fiber reinforced epoxy laminates. CIRP Annals-Manufacturing Technology, 2013, 62(1): 91–94 Thirumalai Kumaran S, Ko T J, Li C, et al. Rotary ultrasonic machining of woven CFRP composite in a cryogenic environment. Journal of Alloys and Compounds, 2017, 698: 984–993