Hole‐growth instability in the dewetting of evaporating polymer solution films

Journal of Polymer Science, Part B: Polymer Physics - Tập 40 Số 24 - Trang 2825-2832 - 2002
Xiaohong Gu1,2, Dharmaraj Raghavan2, Jack F. Douglas3, Alamgir Karim3
1MS8615, Building Materials Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
2Polymer Program, Department of Chemistry, Howard University, 525 College Street, Northwest, Washington, D.C. 20059
3MS8542, Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

Tóm tắt

Abstract

We investigate the dewetting of aqueous, evaporating polymer [poly(acrylic acid)] solutions cast on glassy hydrophobic (polystyrene) substrates. As in ordinary dewetting, the evaporating films initially break up through the nucleation of holes that perforate the film, but the rapidly growing holes become unstable and form nonequilibrium patterns resembling fingering patterns that arise when injecting air into a liquid between two closely spaced plates (Hele–Shaw patterns). This is natural because the formation of holes in thin films is similar to air injection into a polymer film where the thermodynamic driving force of dewetting is the analogue of the applied pressure in the flow measurement. The patterns formed in the rapidly dewetting and evaporating polymer films become frozen into a stable glassy state after most of the solvent (water) has evaporated, leaving stationary patterns that can be examined by atomic force microscopy and optical microscopy. Similar patterns have been observed in water films evaporating from mica substrates, block copolymer films, and modest hole fingering has also been found in the dewetting of dry polymer films. From these varied observations, we expect this dewetting‐induced fingering instability to occur generally when the dewetting rate and film viscosity are sufficiently large. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2825–2832, 2002

Từ khóa


Tài liệu tham khảo

Wicks Z. W., 1992, Organic Coatings: Science and Technology

Garbassi F., 1994, Polymer Surfaces

10.1016/0009-2509(91)80012-N

10.1103/PhysRevLett.76.4368

10.1002/(SICI)1099-0488(19980115)36:1<191::AID-POLB21>3.0.CO;2-6

10.1021/ma970687g

10.1021/ma001440d

10.1103/PhysRevLett.72.3562

10.1209/0295-5075/29/6/005

10.1103/PhysRevE.65.021602

10.1103/PhysRevE.57.2906

10.1016/S0167-2738(00)00619-6

10.1103/PhysRevLett.63.1958

10.1021/la981693o

10.1021/ma9906074

10.1021/ma950297z

10.1006/jcis.1998.5820

Reiter G., 2001, Phys Rev Lett, 87, 166103‐1

10.1021/ma020161i

10.1021/ma025509o

10.1063/1.480585

10.1103/PhysRevLett.81.5173

Higgins A. M., 2002, Europhys J, 8, 137

10.1017/S0022112081003613

10.1016/0370-1573(95)91133-U

10.1038/343523a0

10.1016/0378-4371(92)90002-8

10.1103/PhysRevE.49.2972

10.1016/0026-0800(70)90038-8

10.1021/la00029a031

Gu X.;Raghavan D.;Douglas J. F.;Karim A.Unpublished data.

10.1021/ma991206r

10.1021/la960189l

10.1016/S0039-6028(96)01591-9

10.1016/S0169-4332(97)80204-8

10.1021/ja971474

10.1021/la970948f

10.1063/1.113020

10.1103/PhysRevLett.55.2688

10.1016/0003-2670(94)00671-8

Ferreiro V., 2002, Phys Rev E: Stat Phys Plasmas Fluids Relat Interdiscip Top, 65

10.1103/PhysRevLett.56.336

10.1002/(SICI)1097-0126(200005)49:5<463::AID-PI434>3.0.CO;2-5

10.1103/PhysRevLett.68.75

10.1103/PhysRevLett.80.2869

10.1103/PhysRevLett.63.984

10.1103/PhysRevA.31.1977

10.1103/PhysRevLett.52.1621

10.1038/323424a0

10.1103/PhysRevE.47.4278

10.1103/PhysRevLett.81.1861