Hoeffding decompositions for exchangeable sequences and chaotic representation of functionals of Dirichlet processes

Comptes Rendus Mathematique - Tập 336 - Trang 845-850 - 2003
Giovanni Peccati1,2
1Laboratoire de probabilités et modèles aléatoires, Universités de Paris VI & VII, Paris 75252, France
2Istituto di Metodi Quantitativi dell'Università ‘L. Bocconi’, 25, via Sarfatti, 20136 Milan, Italy

Tài liệu tham khảo

Aldous, 1983, Exchangeability and related topics, 1117 Blackwell, 1973, Ferguson distribution via Pólya urn schemes, Ann. Statist., 1, 353, 10.1214/aos/1176342372 Bloznelis, 2001, Orthogonal decomposition of finite population statistics and its applications to distributional asymptotics, Ann. Statist., 29, 353, 10.1214/aos/1009210694 Bloznelis, 2002, An Edgeworth expansion for finite population statistics, Ann. Probab., 30, 1238, 10.1214/aop/1029867127 Ferguson, 1973, A Bayesian analysis of some non-parametric problems, Ann. Statist., 1, 209, 10.1214/aos/1176342360 Hoeffding, 1948, A class of statistics with asymptotically normal distribution, Ann. Math. Statist., 19, 293, 10.1214/aoms/1177730196 Koroljuk, 1994 G. Peccati, A note about Hoeffding-ANOVA decompositions for symmetric statistics of exchangeable observations, Prépublication n. 717 du Laboratoire de Probabilités et Modèles Aléatoires de l'Université de Paris VI, 2002, submitted G. Peccati, Multiple integral representation for functionals of Dirichlet processes, Prépublication n. 748 du Laboratoire de Probabilités et Modèles Aléatoires de l'Université de Paris VI, 2002, submitted G. Peccati, Chaos Brownien d'espace–temps, décompositions d'Hoeffding et problèmes de convergence associés, Thèse de Doctorat, Université de Paris VI, 2002 Pitman, 1996, Some developments of the Blackwell–MacQueen urn scheme, 30 Stroock, 1987, Homogeneous chaos revisited, 1274, 1 Zhao, 1990, Normal approximation for finite-population U-statistics, Acta Math. Appl. Sinica, 6, 263, 10.1007/BF02019152