Hodge-type Decomposition for Time-dependent First-order Parabolic Operators with Non-constant Coefficients: The Variable Exponent Case

Rolf Sören Kraußhar1, M. M. Rodrigues2, N. Vieira2
1Erziehungswissenschaftliche Fakultät, Universität Erfurt
2CIDMA - Center for Research and Development in Mathematics and Applications, Department of Mathematics, University of Aveiro, Aveiro, Portugal

Tóm tắt

Từ khóa


Tài liệu tham khảo

E. Acerbi and G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Ration. Mech. Anal., 164-No.3, 213–259 (2002)

R. Artino and J. Barros-Neto, Hypoelliptic Boundary-Value Problems, Lectures Notes in Pure and Applied Mathematics-Vol.53, Marcel Dekker, New York-Basel, 1980.

P. Cerejeiras, U. Kähler, M.M. Rodrigues and N. Vieira, Hodge-type decomposition in variable exponent spaces for the time-dependent operators: the Schrödinger case, Commun. Pure Appl. Anal., 13-No.6, (2014), 2253–2272

P. Cerejeiras and N. Vieira, Regularization of the non-stationary Schrödinger operator, Math. Meth. in Appl. Sc., 32-No.(4), (2009), 535–555

Cerejeiras P., Vieira N.: Factorization of the Non-Stationary Schrödinger Operator, Adv. Appl. Clifford Algebr. 17, 331–341 (2007)

P. Cerejeiras, U. Kähler and F. Sommen, Parabolic Dirac operators and the Navier- Stokes equations over time-varying domains, Math.Meth. in Appl. Sc.,28-No.14, (2005), 1715-1724.

Y. Chen, S. Levine and R. Rao, Variable exponent, linear growth functionals in image restoration, SIAM J. Appl. Math. 66-No.4, (2006), 1383-1406.

R. Delanghe, F. Sommen and V. Souc̆ek, Clifford algebras and spinor-valued functions. A function theory for the Dirac operator, Mathematics and its Applications-Vol.53, Kluwer Academic Publishers, Dordrecht etc., 1992.

L. Diening, P. Harjulehto, P. Hästö and M. Ružička, Lebesgue and Sobolec Spaces with variable Exponents, Springer-Verlang, Berlin, 2011.

L. Diening, D. Lengeler and M. Ružička, The Stokes and Poisson problem in variable exponents spaces, Complex Var. Elliptic Equ., 56-No.7-9, (2011), 789-811.

R. Fortini, D. Mugnai and P. Pucci, Maximum principles for anisotropic elliptic inequalities, Nonlinear Anal.,70-No.8, (2009), 2917-2929.

K. Gürlebeck and W. Sprößig, Quaternionic and Clifford Calculus for Physicists and Engineers, Mathematical Methods in Practice, Wiley, Chichester, 1997.

R. F. Hoskins and J.S. Pinto, Theories of Generalised Functions - Distributions, Ultradistributions and other Generalised Functions, Horwood Publishing, Chichester, 2005.

O. Kováčik and J. Rákosník, On spaces L p(x) and W 1,p(x), Czechoslovak Math. J., 41(116)-No.4, (1991), 592-618.

R.S. Kraußhar, M.M. Rodrigues and N. Vieira, Hodge decomposition and solution formulas for some first-order time-dependent parabolic operators with non-constant coefficients,Ann. Mat. Pura Appl., in press, DOI: 10.1007/s10231-013-0357-3 .

R.S. Kraußhar and N. Vieira, The Schrödinger equation on cylinders and the n-torus, J. Evol. Equ., 11-No.1, (2011), 215-237.

Laskin N., Fractional Schrödinger equation. Phys. Rev. E, 66, 056108 (2002)

N. Laskin, Fractional quantum mechanics, Phy. Rev. E, 62-No.3, (2000), 3135-3145.

N. Laskin, Fractional quantum mechanics and Lévy path integrals, Phys. Lett. A, 268, 298–305 (2000)

H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen Co. Ltd., Tokyo, 1950.

H. Nakano, Topology of linear topological spaces, Maruzen Co. Ltd., Tokyo, 1951.

M. Sanchón and J.M. Urbano, Entropy solutions for the p(x)-Laplace equation Trans. Amer. Math. Soc., 361, (2009), 6387-6405.

S. Samko, On a progress in the theory of Lebesgue spaces with variable exponent: maximal and singular operators, Integr. Transf. Spec. F., 16-No.5-6, (2005), 461-482.

Sharapudinov I.I., Topology of the space L p(t)([0, t]). Math. Notes 26, 796-806 (1980)

W. Sprößig, On Helmotz decompositions and their generalizations-an overview, Math. Meth. in Appl. Sc., 33-No.4, (2009), 374-383.

T. Tao, Nonlinear dispersive equations. Local and global analysis, CBMS Regional Conference Series in Mathematics-Vol.106, American Mathematical Society, 2006.

G. Velo, Mathematical Aspects of the nonlinear Schrödinger Equation, Proceedings of the Euroconference on nonlinear Klein-Gordon and Schrdinger systems: theory and applications, L. Vázquez et al. (eds.), World Scientific, Singapore, (1996), 39-67.