Hodge polynomials of the moduli spaces of rank 3 pairs

Geometriae Dedicata - Tập 136 - Trang 17-46 - 2008
Vicente Muñoz1
1Instituto de Ciencias Matemáticas CSIC-UAM-UCM-UC3M, Consejo Superior de Investigaciones Científicas, Madrid, Spain

Tóm tắt

Let X be a smooth projective curve of genus g ≥ 2 over the complex numbers. A holomorphic triple $${(E_1, E_2, \phi)}$$ on X consists of two holomorphic vector bundles E 1 and E 2 over X and a holomorphic map $${\phi \colon E_{2}\to E_{1}}$$ . There is a concept of stability for triples which depends on a real parameter σ. In this paper, we determine the Hodge polynomials of the moduli spaces of σ-stable triples with rk(E 1) = 3, rk(E 2) = 1, using the theory of mixed Hodge structures. This gives in particular the Poincaré polynomials of these moduli spaces. As a byproduct, we recover the Hodge polynomial of the moduli space of odd degree rank 3 stable vector bundles.

Tài liệu tham khảo

Bradlow S.B., García-Prada O.: Stable triples, equivariant bundles and dimensional reduction. Math. Ann. 304, 225–252 (1996) Bradlow S.B., García-Prada O., Gothen P.B.: Moduli spaces of holomorphic triples over compact Riemann surfaces. Math. Ann. 328, 299–351 (2004) Burillo J.: El polinomio de Poincaré-Hodge de un producto simétrico de variedades kählerianas compactas. Collect. Math. 41, 59–69 (1990) Del Baño S.: On the motive of moduli spaces of rank two vector bundles over a curve. Compos. Math. 131, 1–30 (2002) Deligne, P.: Théorie de Hodge I,II,III. In: Proc. I.C.M., vol. 1, 1970, pp. 425–430; in Publ. Math. I.H.E.S. 40, 5–58 (1971); ibid. 44, 5–77 (1974) Durfee, A.H.: Algebraic varieties which are a disjoint union of subvarieties. Lect. Notes Pure Appl. Math. 105, 99–102. Marcel Dekker (1987) Danivol V.I., Khovanskiǐ A.G.: Newton polyhedra and an algorithm for computing Hodge-Deligne numbers. Math. U.S.S.R. Izv. 29, 279–298 (1987) Earl R., Kirwan F.: The Hodge numbers of the moduli spaces of vector bundles over a Riemann surface. Q. J. Math. 51, 465–483 (2000) García-Prada O.: Dimensional reduction of stable bundles, vortices and stable pairs. Int. J. Math. 5, 1–52 (1994) García–Prada, O., Gothen, P.B., Muñoz, V.: Betti numbers of the moduli space of rank 3 parabolic Higgs bundles. Mem. Am. Math. Soc. 187, VIII+80pp (2007) Muñoz V., Ortega D., Vázquez-Gallo M.-J.: Hodge polynomials of the moduli spaces of pairs. Int. J. Math. 18, 695–721 (2007) Muñoz, V., Ortega, D., Vázquez-Gallo, M.-J.: Hodge polynomials of the moduli spaces of triples of rank (2, 2). Q. J. Math. (in press). doi:10.1093/qmath/han007 Schmitt A.: A universal construction for the moduli spaces of decorated vector bundles. Transform. Groups 9, 167–209 (2004) Thaddeus M.: Stable pairs, linear systems and the Verlinde formula. Invent. Math. 117, 317–353 (1994) Zagier, D.: Elementary aspects of the Verlinde formula and of the Harder-Narasimhan-Atiyah-Bott formula. In: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993). Israel Math. Conf. Proc. 9, 445–462 (1996)