Các loài chim đậu tỷ lệ chủ yếu sử dụng sự quen thuộc, chứ không phải ký ức, khi nhớ địa điểm giấu thức ăn

Animal Cognition - Trang 1-15 - 2023
Tom V. Smulders1,2, Laura J. Douglas1, Daniel Reza2, Lucinda H. Male1, Alexander Prysce2, Amélie Alix1, Alexander de Guzman Dodd2, Jenny C. A. Read1
1Centre for Behaviour & Evolution and Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
2School of Psychology, Newcastle University, Newcastle Upon Tyne, UK

Tóm tắt

Các loài chim giấu đồ ăn tìm kiếm nơi cất giấu của chúng bằng cách sử dụng trí nhớ không gian và có kích thước hippocampus lớn hơn. Việc tìm kiếm một địa điểm cất giấu có thể được thực hiện bằng cách sử dụng Ký ức (việc hồi tưởng lại một cách rõ ràng thông tin đã từng trải nghiệm) hoặc Sự quen thuộc (cảm giác "đã gặp cái gì đó trước đây"). Ở con người, hai quá trình này có thể được phân biệt bằng cách sử dụng đường cong đặc trưng hoạt động của người nhận (ROC). Đường cong ROC cho trí nhớ khứu giác ở chuột lang đã chỉ ra rằng hippocampus liên quan đến Ký ức, nhưng không phải Sự quen thuộc. Chúng tôi kiểm tra giả thuyết rằng các loài chim đậu tỷ lệ, có kích thước hippocampus lớn hơn, chủ yếu sử dụng Ký ức để tìm kiếm các kho chứa của chúng. Chúng tôi xác thực một phương pháp mới để xây dựng đường cong ROC ở người và áp dụng phương pháp này vào việc truy xuất kho chứa của chim tit than (Periparus ater). Cả con người và chim đều chủ yếu sử dụng Sự quen thuộc trong việc tìm kiếm kho chứa, với đóng góp thấp hơn của Ký ức. Đóng góp này không khác biệt đáng kể so với xác suất ngẫu nhiên ở chim, nhưng một đóng góp nhỏ vẫn không thể loại trừ. Hiệu suất trí nhớ giảm với thời gian giữ lại ngày càng tăng ở chim. Sinh thái học của các loài Parid giấu thức ăn làm cho việc họ chủ yếu sử dụng Sự quen thuộc trong trí nhớ cho các kho chứa trở nên hợp lý. Hipocampus lớn hơn có thể liên quan đến việc kết hợp nội dung kho chứa và bối cảnh tạm thời với vị trí kho cất, thay vì việc hồi tưởng thông tin không gian chính nó.

Từ khóa

#trí nhớ không gian #hipocampus #nghiên cứu hành vi #chim giấu đồ #ký ức

Tài liệu tham khảo

Adams A, San A (2011) Pigeons exhibit higher accuracy for chosen memory tests than for forced memory tests in duration matching-to-sample. Learn Behav 39:1–11 Arbilly M, Lotem A (2017) Constructive anthropomorphism: a functional evolutionary approach to the study of human-like cognitive mechanisms in animals. Proc R Soc b: B Sci. https://doi.org/10.1098/rspb.2017.1616 Basile BM, Hampton RR (2013) Dissociation of active working memory and passive recognition in rhesus monkeys. Cognition 126:391–396 Biegler R, McGregor A, Krebs JR, Healy SD (2001) A larger hippocampus is associated with longer-lasting spatial memory. Proc Natl Acad Sci USA 98:6941–6944 Brodin A (1994) The disappearance of caches that have been stored by naturally foraging willow tits. Anim Behav 47:730–732 Brodin A, Bolhuis JJ (2008) Memory and brain in food-storing birds: Space oddities or adaptive specializations? Ethology 114:633–645 Brodin A, Kunz C (1997) An experimental study of cache recovery by hoarding willow tits after different retention intervals. Behaviour 134:881–890 Brodin A, Lundborg K (2003) Is hippocampal volume affected by specialization for food hoarding in birds? Proc R Soc Lond B Biol Sci 270:1555–1563 Clayton NS, Dickinson A (1998) Episodic-like memory during cache recovery by scrub jays. Nature 395:272–274 Clayton NS, Krebs JR (1994) Memory for spatial and object-specific cues in food-storing and non-storing birds. J Comp Physiol A 174:371–379 Clayton NS, Yu KS, Dickinson A (2001) Scrub jays (Aphelocoma coerulescens) form integrated memories of the multiple features of caching episodes. J Exp Psychol: Anim Behav Proc 27:17–29 Clayton NS, Yu KS, Dickinson A (2003) Interacting cache memories: evidence for flexible memory use by Western Scrub-Jays (Aphelocoma californica). J Exp Psychol-Anim Behav Proc 29:14–22 Cowie RJ, Krebs JR, Sherry DF (1981) Food storing by marsh tits. Anim Behav 29:1252–1259 Ekman J (1989) Ecology of non-breeding social systems of Parus. Wilson Bull. 101:263–288 Feeney MC, Roberts WA, Sherry DF (2009) Memory for what, where, and when in the black-capped chickadee (Poecile atricapillus). Anim Cogn 12:767–777 Feeney MC, Roberts WA, Sherry DF (2011) Mechanisms of what-where-when memory in black-capped chickadees (Poecile atricapillus): do Chickadees Remember “When”? J Comp Psychol 125:308–316 Fortin NJ, Wright SP, Eichenbaum H (2004) Recollection-like memory retrieval in rats is dependent on the hippocampus. Nature 431:188–191 Garamszegi LSZ, Lucas JR (2005) Continental variation in relative hippocampal volume in birds: the phylogenetic extent of the effect and the potential role of winter temperatures. Proc Roy Soc Lond b. 1:330–333 Gardiner JM, Java RI (1991) Forgetting in recognition memory with and without recollective experience. Memory Cogn 19:617–623 Goto K, Watanabe S (2012) Large-billed crows (Corvus macrorhynchos) have retrospective but not prospective metamemory. Anim Cogn 15:27–35 Guderian S, Brigham D, Mishkin M (2011) Two processes support visual recognition memory in rhesus monkeys. Proc Natl Acad Sci 108:19425 Hampton RR (2001) Rhesus monkeys know when they remember. Proc Natl Acad Sci 98:5359–5362 Hampton RR, Sherry DF, Shettleworth SJ, Khurgel M, Ivy G (1995) Hippocampal volume and food-storing behavior are related in parids. Brain Behav Evol 45:54–61 Hartley T, Lever C, Burgess N, O’Keefe J (2014) Space in the brain: how the hippocampal formation supports spatial cognition. Phil Trans R Soc B-Biol Sci. https://doi.org/10.1098/rstb.2012.0510 Healy SD, Krebs JR (1992) Food storing and the hippocampus in corvids : amount and volume are correlated. Proc R Soc Lond B 248:241–245 Healy SD, Clayton NS, Krebs JR (1994) Development of hippocampal specialisation in two species of tit (Parus spp). Behav Brain Res 61:23–28 Jacoby LL (1991) A process dissociation framework: separating automatic from intentional uses of memory. J Memory Lang. 30:513–541 Kamil AC, Balda RP (1990) Differential memory for different cache sites by clarks nutcrackers (Nucifraga-Columbiana). J Exp Psychol-Anim Behav Proc. 16:162–168 Krebs JR (1990) Food-storing birds : adaptive specialization in brain and behaviour ? Phil Trans R Soc Lond B 329:153–160 Krebs JR, Sherry DF, Healy SD, Perry VH, Vaccarino AL (1989) Hippocampal specialization of food-storing birds. Proc Natl Acad Sci USA 86:1388–1392 Lens L, Adriaensen F, Dhondt AA (1994) Age-related hoarding strategies in the crested tit Parus cristatus: should the cost of subordination be re-assessed? J Anim Ecol 63:749–755 Lorenz TJ, Sullivan KA, Bakian AV, Aubry CA (2011) Cache-site selection in Clark’s Nutcracker (Nucifraga columbiana). Auk 128:237–247 Lucas JR, Brodin A, de Kort SR, Clayton NS (2004) Does hippocampal size correlate with the degree of caching specialization? Proc R Soc Lond Ser B-Biol Sci. 271:2423–2429 Male LH, Smulders TV (2007a) Memory decay and cache site preferences in hoarding coal tits - a laboratory study. Behaviour 144:693–710 Male LH, Smulders TV (2007b) Memory for food caches: not just for retrieval. Behav Ecol 18:456–459 McGregor A, Healy SD (1999) Spatial accuracy in food-storing and nonstoring birds. Anim Behav 58:727–734 Moser EI, Moser MB, McNaughton BL (2017) Spatial representation in the hippocampal formation: a history. Nat Neurosci 20:1448–1464 Perry CJ, Barron AB (2013) Honey bees selectively avoid difficult choices. Proc Nat Acad Sci 110:19155–19159 Pravosudov VV, Clayton NS (2002) A test of the adaptive specialization hypothesis: population differences in caching, memory, and the hippocampus in black-capped chickadees (Poecile atricapilla). Behav Neurosci 116:515–522 Robin J, Garzon L, Moscovitch M (2019) Spontaneous memory retrieval varies based on familiarity with a spatial context. Cognition 190:81–92 Roth TC, Pravosudov VV (2009) Hippocampal volumes and neuron numbers increase along a gradient of environmental harshness: a large-scale comparison. Proc R Soc b: Biol Sci 276:401–405 Roth TC, la Dage LD, Freas CA, Pravosudov VV (2012) Variation in memory and the hippocampus across populations from different climates: a common garden approach. Proc Roy Soc B 279:402–410 Sadeh T, Ozubko JD, Winocur G, Moscovitch M (2016) Forgetting patterns differentiate between two forms of memory representation. Psychol Sci 27:810–820 Sherry DF (1982) Food storage, memory and Marsh Tits. Anim Behav 30:631–633 Sherry DF (1984a) Food storage by black-capped chickadees : memory for the location and contents of caches. Anim Behav 32:451–464 Sherry DF (1984b) What food-storing birds remember. Can J Psychol 38:304–321 Sherry DF, Vaccarino AL (1989) Hippocampus and memory for food caches in black-capped chickadees. Behav Neurosci 103:308–318 Sherry DF, Krebs JR, Cowie RJ (1981) Memory for the location of stored food in marsh tits. Anim Behav 29:1260–1266 Sherry DF, Vaccarino AL, Buckenham K, Herz RS (1989) The hippocampal complex of food-storing birds. Brain Behav Evol 34:308–317 Shettleworth SJ (2003) Memory and hippocampal specialization in food-storing birds: Challenges for research on comparative cognition. Brain Behav Evol 62:108–116 Smith CN, Wixted JT, Squire LR (2011) The hippocampus supports both recollection and familiarity when memories are strong. J Neurosci 31:15693–15702 Svensson L (1992) Identification guide to european passerines. 4th Edition, British Trust for Ornithology, Stockholm Tunney RJ (2010) Do changes in the subjective experience of recognition over time suggest independent processes? Br J Math Stat Psychol 63:43–62 Tunney RJ, Bezzina G (2007) Effects of retention intervals on receiver operating characteristics in artificial grammar learning. Acta Psychol 125:37–50 Wais PE, Squire LR, Wixted JT (2010) In search of recollection and familiarity signals in the hippocampus. J Cogn Neurosci 22:109–123 Weidemann CT, Kahana MJ (2016) Assessing recognition memory using confidence ratings and response times. R Soc Open Sci 3:150670 Yonelinas AP (1994) Receiver-operating characteristics in recognition memory: evidence for a dual-process model. J Exp Psychol Learn Mem Cogn 20:1341–1354 Yonelinas AP (2001) Components of episodic memory: the contribution of recollection and familiarity. Philos Trans R Soc Lond B Biol Sci 356:1363–1374 Yonelinas AP (2002) The nature of recollection and familiarity: A review of 30 years of research. J Mem Lang 46:441–517 Yonelinas AP, Dobbins I, Szymanski MD, Dhaliwal HS, King L (1996) Signal-detection, threshold, and dual-process models of recognition memory: ROCs and conscious recollection. Conscious Cogn 5:418–441 Yonelinas AP, Kroll NE, Dobbins I, Lazzara M, Knight RT (1998) Recollection and familiarity deficits in amnesia: convergence of remember-know, process dissociation, and receiver operating characteristic data. Neuropsychology 12:323–339 Zinkivskay A, Nazir F, Smulders TV (2009) What-where-when memory in magpies (Pica pica). Anim Cogn 12:119–125