Hitting probabilities for systems of non-linear stochastic heat equations in spatial dimension $$k \ge 1$$

Springer Science and Business Media LLC - Tập 1 Số 1 - Trang 94-151 - 2013
Robert C. Dalang1, Davar Khoshnevisan2, Eulàlia Nualart3
1Institut de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, Station 8, 1015 , Lausanne, Switzerland
2Department of Mathematics, The University of Utah, 155 S. 1400 E, Salt Lake City, UT, 84112-0090, USA
3Department of Economics and Business, Barcelona Graduate School of Economics, University Pompeu Fabra, Ramón Trias Fargas 25–27, 08005 , Barcelona, Spain

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bally, V., Pardoux, E.: Malliavin calculus for white noise driven parabolic SPDEs. Potential Anal. 9, 27–64 (1998)

Biermé, H., Lacaux, C., Xiao, Y.: Hitting probabilities and the Hausdorff dimension of the inverse images of anisotropic Gaussian random fields. Bull. Lond. Math. Soc. 41, 253–273 (2009)

Dalang, R.C.: Extending martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e’s. Electron. J. Prob. 4, 1–29 (1999)

Dalang, R.C., Frangos, N.: The stochastic wave equation in two spatial dimensions. Ann. Probab. 26, 187–212 (1998)

Dalang, R.C., Khoshnevisan, D., Nualart, E.: Hitting probabilities for systems of non-linear stochastic heat equations with additive noise. ALEA 3, 231–271 (2007)

Dalang, R.C., Khoshnevisan, D., Nualart, E.: Hitting probabilities for systems of non-linear stochastic heat equations with multiplicative noise. Probab. Th. Rel. Fields 144, 371–427 (2009)

Dalang, R.C., Nualart, E.: Potential theory for hyperbolic SPDEs. Ann. Probab. 32, 2099–2148 (2004)

Dalang, R.C., Quer-Sardanyons, L.: Stochastic integrals for spde’s: a comparison. Expos. Math. 29, 67–109 (2011)

Dalang, R.C., Sanz-Solé, M.: Criteria for hitting probabilities with applications to systems of stochastic wave equations. Bernoulli 16, 1343–1368 (2010)

Dalang, R.C., Sanz-Solé, M.: Hitting probabilities for systems of stochastic waves. Preprint (2011)

Fournier, N.: Strict positivity of the density for a Poisson driven S.D.E. Stoch. Stoch. Rep. 68, 1–43 (1999)

Khoshnevisan, D.: Multiparameter Processes. An Introduction to Random Fields. Springer, New York (2002)

Márquez-Carreras, D., Mellouk, M., Sarrà, M.: On stochastic partial differential equations with spatially correlated noise: smoothness of the law. Stoch. Process. Appl. 93, 269–284 (2001)

Métivier, M.: Semimartingales. de Gruyter, Berlin (1982)

Millet, A., Sanz-Solé, M.: A stochastic wave equation in two space dimension: smoothness of the law. Ann. Probab. 27, 803–844 (1999)

Nualart, D.: The Malliavin Calculus and Related Topics, 2nd edn. Springer, London (2006)

Nualart, D.: Analysis on Wiener space and anticipating stochastic calculus. In: Ecole d’Eté de Probabilités de Saint-Flour XXV, Lecture Notes in Mathematics 1690, pp. 123–227. Springer, New York (1998)

Nualart, D., Quer-Sardanyons, L.: Existence and smoothness of the density for spatially homogeneous SPDEs. Potential Anal. 27, 281–299 (2007)

Nualart, E.: On the density of systems of non-linear spatially homogeneous SPDEs. Stoch. 85, 48–70 (2013)

Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (1991)

Sanz-Solé, M.: Malliavin Calculus with Applications to Stochastic Partial Differential Equations. EPFL Press, Lausanne (2005)

Sanz-Solé, M., Sarrà, M.: Path properties of a class of Gaussian processes with applications to SPDE’s. Canad. Math. Soc. Conf. Proc. 28, 303–316 (2000)

Sanz-Solé, M., Sarrà, M.: Hölder continuity for the stochastic heat equation with spatially correlated noise. Sem. Stoch. Anal. Random Fields Appl. III 52, 259–268 (2002)

Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

Walsh, J.B.: An Introduction to Stochastic Partial Differential Equations. In: Ecole d’Eté de Probabilités de Saint-Flour XIV, Lecture Notes in Mathematics, 1180, pp. 266–437. Springer, Berlin (1986)

Watanabe, S.: Lectures on stochastic differential equations and Malliavin calculus. In: Tata Institute of Fundamental Research Lectures on Mathematics and Physics, vol. 73. Springer, Berlin (1984)

Xiao, Y.: Sample path properties of anisotropic Gaussian random fields. In: Khoshnevisan, D., Rassoul-Agha, F. (eds.) A Minicourse on Stochastic Partial Differential Equations. Lecture Notes in Math 1962, pp. 145–212. Springer, New York (2009)