History of solar oblateness measurements and interpretation

Springer Science and Business Media LLC - Tập 36 - Trang 407-436 - 2011
J. -P. Rozelot1, C. Damiani2
1OCA-LAGRANGE, CNRS UMR 6525, Nice University, Grasse, France
2INAF, Osservatorio Astrofisico di Catania, Catania, Italy

Tóm tắt

The story of the solar oblateness begins in the pre-relativity days when an explanation of the observed advance of Mercury’s perihelion was searched for. Then, examination of historical records during the first decade of the twentieth century shows clearly a strong effort to measure the solar shape. Results show discrepancies, due on one hand, to the fact that physical statements in the solar case are still pending (for example does the solar core rotate rapidly? Is the Sun an oblique rotator? How does the magnetic field distort the outer shape?) and on the other hand, due to the difficulty in measuring a faint quantity, even when using the cutting edge of up-to-date techniques. We provide a new perspective on the controversy which followed measurements made in Princeton (USA) in the mid-1960s, highlighting the possibility to advocate alternative theories of gravitation. Since then, the accurate shape of the Sun has been actively debated, and so far, only satellite experiments seem to achieve the required sensitivity to measure the expected faint deviations to sphericity. In a close cooperation between experiments and theory, we point out how false ideas or inexact past measurements may contribute to the advancement of new physical concepts.

Tài liệu tham khảo

Afanaseva, T.I., M.D. Kislik, F. Kolyuka Yu and V.F. Tikhonov. 1990. Experimental determination of the Sun’s oblateness. Astron. J. 67: 6, 1326–1328 Ajabshirizadeh, A., J.P. Rozelot and Z. Fazel. 2008. Contribution of the solar magnetic field on gravitational moments. Scientia Iranica 15: 144–149 Ambronn, L. 1906. Remarks on Mr. C.L. Poor’s Papers on the Figure of the Sun. Astrophys. J. 23: 343–344 Ambronn, L. and A.C.W. Schur. 1905. Die Messungen des Sonnendurchmessers an dem Repsold’schen 6-zoelligen Heliometer der Sternwarte zu Goettinge ausgefuhrt. Astronomische Mittheilungen der Koeniglichen Sternwarte zu Goettingen, Part 7. T.: Druck der Dieterich’schen Univ.-Buchdruckerei (W. Fr., 126 p.) Antia, H.M., S.M. Chitre and D.O. Gough. 2008. Temporal variations in the Sun’s rotational kinetic energy. Astron. Astrophys. 477: 657–663 Armstrong, J. and J.R. Kuhn. 1999. Interpreting the Solar Limb Shape Distortions. Astrophys. J. 525: 533 Auwers, A. 1891. Die Sonnenparallaxe nach den Heliometer-Beobachtungen der deutschen Venus-Expeditionen von 1874 und 1882. Astron. Nachr. 128: 329 Bauschinger, J. (Von). 1884. Zur Frage über die Bewegung des Mercurperihels. Astron. Nachr. 109: 27–32 Bearsley, B.J. 1987. The Visual Shape and multipolar moments of the Sun. Ph.D. Thesis, University of Arizona (USA), 116 p. Bois, E. and J.-F. Girard. 1999. Impact of the Quadrupole Moment of the Sun on the Dynamics of the Earth-Moon System. Cel. Mech. 73: 329–338 Böhme, S. 1970. Zumm Einfluss eines Quadrupolmoments der Sonne auf die Bahnlage der planeten. Astron. Nachr. 292: 35–36 Brans, C. and R.H. Dicke. 1961. Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124: 925–935 Bruns, H. 1878. Die Figur der Erde, edited by P. Stankiewicz, Berlin Burša, M. 1986. The Sun’s flattening and its influence on planetary orbits. Bull. Astron. Inst. Czechosl. 37: 312–313 Bush, R.I., M. Emilio and J.R. Kuhn. 2010. On the Constancy of the Solar Radius. III. Astrophys. J. 716: 1381-1385 Campbell, L. and J.W. Moffat. 1983. Quadrupole moment of the Sun and the planetary orbits. Astrophys. J. Lett. 275: L77-L79 Chandrasekhar, S. 1933. The equilibrium of distorted polytropes. Mont. Nont. Roy. Astr. 93: 390–406 Chaplin, W.J. and S. Basu. 2008. Perspectives in Global Helioseismology and the Road Ahead. Sol. Phys. 251, 53–75 Chapman, G.A. 1972. Photospheric faculae and the solar oblateness: a reply to Faculae and the solar oblateness, by R.H. Dicke. Astrophys. J. 183: 1005–1023 Chapman, G.A. and A.P. Ingersoll. 1973. Photospheric faculae and the solar oblateness. Astrophys. J. 175: 819–829 Chevalier, P.S. 1912. Note sur les diamètres polaire et équatorial du Soleil. Bull. Astron. 29: 473–475 Clairaut, A.C. 1743. Théorie de la Figure de la Terre, Tirée de l’Hydrostatique. David Fils, Paris, 2nd edn. parue en 1808 chez Courcier, Paris Cocke, W.J. 1967. Alternative Cause of the Solar Oblateness. Phys. Rev. Lett. 19: 609–611 Damiani-Badache, C., J.P. Rozelot, K. Coughlin and N. Kilifarska. 2007. Influence of the UTLS region on the astrolabes solar signal measurement. Mont. Nont. Roy. Astr. 380: 609–614 Damiani, C., J.P. Rozelot and S. Pireaux. 2009a. Probing the solar surface: the oblateness and astrophysical consequences. Astrophys. J. 703: 1791-1796 Damiani, C., B. Tayoglu and J.P. Rozelot. 2009b. From solar to stellar oblateness. SF2A, Proceedings of the Annual meeting of the French Society of Astronomy and Astrophysics, held 29 June–4 July 2009 in Besançon, France, edited by M. Heydari-Malayeri, C. Reylé and R. Samadi, p. 259 Damiani, C., J.P. Rozelot, S. Lefebvre, A. Kilcik and A.K. Kosovichev. 2010. A brief history of the solar oblateness. A review. J. Atmosph. Sol. Terrestr. Phys. 73: 241-250 Deslandes, H. 1995. Héliomètre à balayage : validation complète de la chaîne de données. DEA de l’Université Paris VI, 102 p. Dicke, R.H. 1970. The solar oblateness and the gravitational quadrupole moment. Astrophys. J. 159: 1-23 Dicke, R.H. 1972. Faculae and the Solar Oblateness. Astrophys. J. 175: 831 Dicke, R.H. 1973. Solar Oblateness and Equatorial Brightening. Astrophys. J. 180: 293–306 Dicke, R.H. 1974. The Oblateness of the Sun. Astrophys. J. Supp. Ser. 27: 131 Dicke, R.H. 1976. New solar rotational period, the solar oblateness and solar faculae. Phys. Rev. Lett. 37: 1240–1242 Dicke, R.H. 1982. A magnetic core in the Sun – The solar rotator. Sol. Phys. 78: 3–16 Dicke, R.H. and H.M. Goldenberg. 1967. Solar oblateness and General Relativity. Phys. Rev. Lett. 18: 313–316 Dicke, R.H., J.R. Kuhn and K.G. Libbrecht. 1983. Oblateness of the Sun in 1983 and relativity. Nature 316: 687–690 Dicke, R.H., J.R. Kuhn and K.G. Libbrecht. 1985. Facular influences on the apparent solar shape. Nature 304: 326–328 Dicke, R.H., J.R. Kuhn and K.G. Libbrecht. 1986. The variable oblateness of the Sun – Measurements of 1984. Appl. J. 311: 1025–1030 Dicke, R.H., J.R. Kuhn and K.G. Libbrecht. 1987. Is the solar oblateness variable? Measurements of 1985. Astrophys. J. 318: 451–458 Djafer, D., S. Sofia, A. Egidi and G. Thuillier. 2008. Processing Method Effects on Solar Diameter Measurements: Use of Data gathered by the Solar Disk Sextant. Sol. Phys. 247: 225–248 Durney, B. and I.W. Roxburgh. 1969. Inhomogeneous Convection and the Equatorial Acceleration of the Sun. Sol. Phys. 16: 3–20 Durney, B.R. and N.E. Werner. 1971. On the solar oblateness: The combined effect of a pole-equator difference in effective temperature and mechanical heating. Sol. Phys. 21: 21-26 Duvall, T.L., W.A. Dziembowski, P.R. Goode, D.O. Gough, J.W. Harvey and J.W. Leibacher. 1984. Internal rotation of the Sun. Nature 310: 22 Egidi, A., B. Caccin, S. Sofia, W. Heaps, W. Hoegy and L. Twigg. 2006. High-Precision Measurements of the Solar Diameter and Oblateness by the Solar Disk Sextant (SDS) Experiment. Sol. Phys. 235: 407-418 Emilio, M. 1997. Analysis of the Sun’s observations with prismatic astrolabe and Solar Diameter Latitude Dependence. MsC. Thesis, Instituto Astronomico e Geofisico, Universidade de São Paulo (Brazil) Emilio, M. and N.V. Leister. 2005. Solar diameter measurements at São Paulo Observatory, Mon. Not. R. Astron. Soc. 361: 1005–1011 Emilio, M., R.I. Bush, J. Kuhn and P. Sherrer. 2007. A Changing Solar Shape. Astrophys. J. 660: L161-L163 Emilio, M., J. Kuhn, R.I. Bush and P. Sherrer. 2000. On the constancy of the solar diameter. Astrophys. J. 543: 1007–1010 Einstein, A. 1916. Die Grundlage der allgemeinen Relativitätstheorie (The Foundation of the General Theory of Relativity). Annalen der Physik 354: 769–822 Fienga, A. 2010. Gravitation and Fundamental Physics in Space. GPhyS Colloquium, Paris, 22–24 June 2010, http://gphys.obspm.fr/Paris2010/Home.html Fivian, M.D., H.S. Hudson, R.P. Lin and H.J. Zahid. 2008. Solar Shape Measurements from RHESSI: A Large Excess Oblateness. Science 322: 560–562 Gialanella L. 1941. Le Variazioni del diametro solare nel sessanteno 1874–1937, secondo le osservazioni eseguite neel’osservatorio del Campidoglio. Memoria presentata dall’Academico Pontificio Guiseppe Armellini nella Tornata del 30 novembre 1941. Commentationes, Vol. VI: No. 25, pp. 1139–1197 Giannuzi, M.A. 1953. Riduzione delle osservazioni dei diametro solari orizzontali (1851 al 1937). Mem. Soc. Astron. Ital. 305–314 Giannuzi, M.A. 1955. Riduzione delle osservazioni dei diametro solari verticali (1851 al 1937). Mem. Soc. Astron. Ital. 447-454 Gilvarry, J.J., and P.A. Sturrock. 1967. Solar Oblateness and the Perihelion Advances of Planets. Nature 216: 1283–1285 Goldreich, P. and G. Schubert. 1967. Rotation of the Sun. Science 156: 1101-1102 Goldreich, P. and G. Schubert. 1968. A Theoretical Upper Bound to the Solar Oblateness. Astrophys. J. 154: 1005 Gough, D.O. 1982. Internal rotation and gravitational quadrupole moment of the Sun. Nature 298: 334–339 Goupil, M.J. 2009. The rotation of Sun and Stars, edited by J.P. Rozelot and C. Neiner, Lecture Notes in Physics, Vol. 765. Springer, Berlin, 260 p. Hamy, M. 1889. Étude sur la figure des corps célestes. Annales de l’Observatoire de Paris. Mémoires, t. 19, Paris, edited by Gauthier-Villars et fils, pp. 1–54 Harzer, P. 1891. Uber die Rotations bewegung der Sonne. Astron. Narchr. 127: 17 Hayn, F. 1924. Die Gestalt der Sonne. Astron. Nachr. 220: 113 Hill, H.A. 1986. SCLERA, Monograph Series in Astrophysics, N° 4 Hill, H.A., P.D. Clayton, D.L. Patz, A.W. Healy, R.T. Stebbins, J.R. Oleson and C.A. Zanoni. 1974. Solar Oblateness, Excess Brightness, and Relativity. Phys. Rev. Lett. 33: 1497–1500, and errata: (1975-c) Phys. Rev. Lett. 34: 296 Hill, H.A. and R.T. Stebbins. 1975a. The intrinsic visual oblateness of the Sun. Astrophys. J. 200: 471–483 Hill, H.A., R.T. Stebbins and J.R. Oleson. 1975b. The Finite Fourier Transform Definition of an edge of the solar disk. Astrophys. J. 200: 484–498 Hill, H.A., G.R. Rabaey and R.D. Rosenwald. 1986. Relativity in Celestial Mechanics and Astrometry. IAU Symp., 114, edited by J. Kowalevsky and V.A. Brumberg, Reidel Pub., 345 Howard, L.N. 1967. Solar Spin-down Problem. Nature 214: 1297–1299 Howe, R. 2009. Solar Interior Rotation and its Variation, in Living Reviews in Solar Physics (Vol. 6, No. 1). http://www.livingreviews.org/lrsp-2009–1 Hudson, H. and J.P. Rozelot. 2010. History of solar oblateness. http://sprg.ssl.berkeley.edu/~tohban/wiki/index.php/History_of_Solar_oblateness Ingersoll, A.P. and E.A. Spiegel. 1971. Temperature Variation and the Solar Oblateness. Astrophys. J. 163: 375–382 Ioro, L. 2005. On the possibility of measuring the solar oblateness and some relativistic effects from planetary ranging. Astron. Astrophys. 433: 385–393 Isaak, G.R. 1982. Solar core rotation. Nature 299: 704–707 Isaak, G.R. 2000. Proc. 9th Meeting on Solar Physics, Magnetic Fields and Solar Processes, Florence, Italy, 12–18 September 1999 (ESA SP-448, December 1999), 1–5 Kislik, M.D. 1983. On the solar oblateness. Sov. Astron. Lett. 9: 5–7 Komm, R.W., R.F. Howard and J.W. Harvey. 1993. Rotation rates of small magnetic features from two- and one-dimensional cross-correlation analyses. Sol. Phys. 145: 1-10 Kuhn, J.R., K.G. Libbrecht and R.H. Dicke. 1984. Observations of a Solar Latitude Dependent Photospheric Brightness Variation. Bull. Am. Astron. Soc. 16: 451 Kuhn, J.R., K.G. Libbrecht and R.H. Dicke. 1998. The surface temperature of the Sun and changes in the solar constant. Science 242: 908–911 Kuhn, J.R., R.I. Bush, M. Emilio and P.H. Scherrer. 2004. On the Constancy of the Solar Diameter. II. Astrophys. J. 613: 1241-1252 Laclare, F. 1983. Astrolabe measurements of the solar diameter. Astron. Astrophys. 125: 200–203 Laclare, F., C. Delmas and A. Irbah. 1999. Variations apparentes du diamètre solaire obervées à l’astrolabe solaire, 1975–1998. C. R. Acad. Sci. Paris 327: II, pp. 1107–114 Landgraf, W. 1992. An estimation of the oblateness of the Sun from the motion of Icarus. Sol. Phys. 142: 403–406 Ledoux, P. 1945. On the Radial Pulsation of Gaseous Stars. Astrophys. J. 102: 143 Lefebvre, S. and A.K. Kosovichev. 2005. Changes in the subsurface stratification of the sun with the 11-year activity cycle. Astrophys. J. 633: L149-L152 Lefebvre, S. and J.P. Rozelot. 2004. Solar latitudinal distortions: from theory to observations. A&A 419: 1133–1140 Lefebvre, S., A. Kosovichev and J.P. Rozelot. 2007. Test of nonhomologous solar radius changes with the 11 year activity cycle. Appl. J. 658: L135-L138 Lefebvre, S., J.P. Rozelot, S. Pireaux, A. Ajabshirizadeh and Z. Fazel. 2005. Global properties of Sun and stars: what can we learn from irradiance and shape? Mem. Soc. Astron. Ital. 76: 994–996 Li, L.H., P. Ventura, S. Basu, S. Sofia and P. Demarque. 2005. 2-D Stellar Evolution Code Including Arbitrary Magnetic Fields. Appl. J. S. 164: 215–254 Libbrecht, K.G. 1986. The shape of the Sun. Ph.D. Thesis, Princeton University (USA), 132 p. Lieske, J.H. and G.W. Null. 1969. Icarus and the Determination of Astronomical Constants. Astrophys. J. 74: 297–307 Lydon, T.J. and S. Sofia. 1996. A Measurement of the Shape of the Solar Disk: The Solar Quadrupole Moment, the Solar Octopole Moment, and the Advance of Perihelion of the Planet Mercury. Phys. Rev. Lett. 76: 177–179 Maeder, A. 1999. Stellar evolution with rotation IV: von Zeipel’s theorem and anisotropic losses of mass and angular momentum. Astron. Astrophys. 347: 186 Maier, E., L. Twigg and S. Sofia. 1992. Preliminary results of a balloon flight of the solar disk sextant. Astrophys. J. 389: 447-452 Meyermann, B. 1950. Zur Pulsation der Sonne. Astron. Nachr. 279: 45–46 Modolensky, M.S. 1988. Dependence of the gravitational field of the Earth on the changes of its velocity of rotation. Geodezyya i Kartogrtaphiaya 5: 11-13 Milne, E.A. 1923. The equilibrium of a rotating star. Mon. Not. R. Astron. Soc. 83: 118–147 Newcomb, S. 1895. Fundamental Constants of Astronomy, US Government Print Office, Washington, DC, p. 111 Noël, F. 2003. Solar astrometry at Santiago, in The Sun’s surface and subsurface, edited J.P. Rozelot, Lecture Notes in Physics, Springer (D) 599, pp. 181-195 Paternó, L., S. Sofia and M.P. DiMauro. 1996. The rotation of the Sun’s core. Astron. Astrophys. 314: 940–946 Pijpers, F.P. 1998. The solar gravitational quadrupole. Mon. Not. R. Astron. Soc. 297: L76-L80 Pireaux, S. and J.P. Rozelot. 2003. Solar Quadrupole moment and purely Relativistic Gravitation Contributions To Mercury’s Perihelion Advance. Astrophys. Space Sci. 284: 1159–1194 Pitjeva, E.V. 2005. Relativistic Effects and Solar Oblateness from Radar Observations of Planets and Spacecraft. Astron. Lett. 31: 340–349 Poor, C.L. 1905a, The Figure of the Sun. Astrophys. J. 22: 103 Poor, C.L. 1905b, The Figure of the Sun II. Astrophys. J. 22: 305 Reis Neto, E., A.H. Andrei, J.L. Penna, E.G. Jilinski and S.P. Puliaev. 2003. Observed Variations of the Solar Diameter in 1998/2000. Sol. Phys. 212: 7–21 Richman, S. 1996. Resolving discordant results: modern solar oblateness experiments. Stud. Hist. Philos. Mod. Phys. 27: 1-22 Rösch, J. 1985. The basic equations for scanning heliometer measurement of solar diameters. Sol. Phys. 96: 213–217 Rösch, J. and J.P. Rozelot. 1996. Le Soleil change-t-il de forme ? C. R. Acad. Sci. Paris 322: 637–644 Roseveare, N.T. 1982. Mercury’s perihelion from Le Verrier to Einstein. Oxford University Press, UK, 201 p. Roxburgh, I.W. 1967a. Implications of the Oblateness of the Sun. Nature 213: 1077–1078 Roxburgh, I.W. 1967b. Solar Oblateness. Nature 216: 1286 Roxburgh, I.W. 2001. Gravitational multipole moments of the Sun determined from helioseismic estimates of the internal structure and rotation. Astron. Astrophys. 377: 688–690 Rozelot, J.P. and E. Bois. 1997. New results concerning the solar oblateness and consequences on the solar interior, 18th NSO Workshop, Sacramento Peak, USA, edited by Balasubramaniam, in Conf. Pacif. Astro. Soc. 140: 75–82 Rozelot, J.P., C. Damiani and S. Lefebvre. 2009. Variability of the solar shape (before space dedicated missions). J. Atmos. Sol.-Terr. Phys. 71: 1683–1694 Sadřakov, S., and M. Dačić. 1988. Results of diurnal measurements for the Sun, Mercury, Venus and Mars obtained in the period 1984–1986. Bull. Obs. Astron. Belgr. 138: 78-84 Schatten, K.H. 1975. Why the Sun may appear oblate. Astrophys. Space. Sci. 34: 467-480 Schatten, K.H. and S. Sofia. 1983. Facular influences on the apparent solar shape. Nature 301: 133–134 Schatzman, E. 1962. A theory of the role of magnetic activity during star formation. Annales d’Astrophysique 25: 18 Schou, J., H.M. Antia, S. Basu et al. 2008. Helioseismic studies of differential rotation in the solar enveloppe by the solar oscillations investigation using the Michelson Doppler Imager. Astrophys. J. 505: 390–417 Shapiro, I. 1999. A century of relativity. Rev. Modern Phys. 71: 41–53 Sofia, S., S. Basu, P. Demarque, L. Li and G. Thuillier. 2005. The nonhomologous nature of Solar Diameter Variations. Astrophys. J. 632: L147-L150 Sturrock, P.A. 2009. Combined Analysis of Solar Neutrino and Solar Irradiance Data: Further Evidence for Variability of the Solar Neutrino Flux and Its Implications Concerning the Solar Core. Sol. Phys. 254: 227–239 Sturrock, P.A. and L. Bertello. 2010. Power Spectrum Analysis of Mount Wilson Solar Diameter Measurements: Evidence for Solar Internal r-mode Oscillations. Astrophys. J. 725: 492–495 Sturrock, P.A. and J.J. Gilvarry. 1967, Solar Oblateness and Magnetic Field. Nature 216: 1280–1283 Thushari, E.P.B.A., R. Nakamura, M. Hashimoto and K. Arai. 2010. Brans-Dicke model constrained from the Big Bang nucleosynthesis and magnitude redshift relations of supernovae. Astron. Astrophys. 521: A52 Tsuneta, S. and Y. Shiozu. 2009. IIIrd Space Climate Conference, F. Ivalo (to be published) Turck-Chièze, S. 2009a. The rotation of the solar core, in The rotation of Sun and Stars, Springer, edited by J.P. Rozelot and C. Neiner, Lecture Notes in Physics 765, 123 Turck-Chièze, S. et al. 2009b. The DynaMICCS perspective (A mission for a complete and continuous view of the Sun dedicated to magnetism, space weather and space climate), Exp. Astron. (Special Issue on ESA’s Cosmic Vision) 23: 1017–1055 Turck-Chièze, S. et al. 2010. Seismic and Dynamical Solar Models. I. The Impact of the Solar Rotation History on Neutrinos and Seismic Indicators. Astrophys. J. 715: 1539–1555 Turyshev, S.G., J.D. Anderson and R.W. Hellings. 1996. relativistic gravity theory and relataed tests with a Mercury orbiter mission. arXiv:gr-qc/9606028 (June 13), 36 p. Turyshev, S.G., M. Shao, K.L. Nordtvedt, H. Dittus, C. Laemmerzahl, S. Theil, C. Salomon, S. Reynaud, T. Damour, U. Johann, P. Bouyer, P. Touboul, B. Foulon, O. Bertolami and J. Páramos. 2009. Advancing fundamental physics with the Laser Astrometric Test of Relativity. Exp. Astron. 27: 27–60 Ulrich, R.K. and G.W. Hawkins. 1981. Astrophys. J. 246: 985 (and erratum, 1981b, Astrophys. J. 249 831) Will, C.M. 1998. The confrontation between general relativity and experiment: a 1998 update. arXiv:gr-qc/9811036 (November 11), 66 p. Will, C.M. 2006. The Confrontation between General Relativity and Experiment: A Centenary Perspective. Progress of Theoretical Physics Supplement 163: 146–162 Wright, T. 1750. An original theory or new Hypothesis of the Universe. Mac Donald, London and American Elsevier Inc. New York, 117 Xu, Y., Y. Yang, Q. Zhang and G. Guochang Xu. 2011. Solar Oblateness and Mercurys Perihelion Precession. Mont. Not. Roy. Astron. Soc., in press Yuan, D.N., C.F. Yoder, A.S. Konopliv, E.M. Standish and W.M. Folkner. 2002. The Size of Mars’ Fluid Core From Mars k2 Love Number Obtained From Analysis of MGS Doppler Tracking. AGU, 1227 Planetary geodesy and gravity (5420, 5714, 6019). Bibliographic Code 2002AGUFM.P62A0369Y