History and variation on the theme of the frobenius reciprocity theorem
Tóm tắt
Từ khóa
Tài liệu tham khảo
W. Armacost, The Frobenius reciprocity theorem and essentially bounded induced representations,Pacific J. Math. 36 (1971), 31–42.
G. Frobenius, Über die Primfactoren der Gruppendeterminante,Sitzungsber. Kön. Preuss. Akad. d. Wiss. Berlin, 1343–1382 (1896 c).
G. Frobenius, Über Relationen zwischen den Characteren einer Gruppe and ihrer Untergruppen,Sitzungsber. Kön. Preuss. Akad. d. Wiss. Berlin, 501–515 (1898).
K. Gauss (Briefwechsel, Band II 1, p. 268 (1900)).
T. Hawkins, New light on Frobenius’ creation of the theory of group characters,Archiv for the History of the Exact Sciences 12 (1974), 217–243.
G. Mackey, Induced representations of locally compact groups I, II,Annals of Math. 55, 58 (1952,1953), 101–139, 193–221.
F. Mautner, A generalization of the Frobenius reciprocity theorem,Proc. Nat. Acad. Set, U.S.A. 37 (1951), 431–435.
C. Moore, On the Frobenius reciprocity theorem for locally compact groups,Pacific J. Math. 12 (1962), 359–365.
T. Enright and N. Wallach, Notes on homological algebra and representations of Lie algebras,Duke Math. J. 47 (1980), 1–15.
H. Weyl,The theory of groups and quantum mechanics, New York: Dover Publications, Inc. (1931).
F. Williams, Frobenius reciprocity and Lie group representations on % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaa0aaaeaacq% GHciITaaacbaGaa8xlaiaa-ngacaWFVbGaa8hAaiaa-9gacaWFTbGa% a83Baiaa-XgacaWFVbGaa83zaiaa-Lhaaaa!4165! $$\overline \partial - cohomology$$ spaces,L’Enseignement Mathématique (2) 28 (1982), 3–30.
F. Williams, Tensor products of principal series representations of complex semisimple Lie groups,Lecture notes in Math. 358, New York: Springer-Verlag (1973).
G. Zuckerman, Notes on the construction of representation by derived functors, Dept. Math. Yale Univ.