Histone chaperone CAF-1: essential roles in multi-cellular organism development

Cellular and Molecular Life Sciences - Tập 72 - Trang 327-337 - 2014
Zhongsheng Yu1,2, Jiyong Liu1,3, Wu-Min Deng4, Renjie Jiao1,2,3
1State Key Laboratory of Brain and Cognitive Science, Institute of Biophysics, The Chinese Academy of Sciences, Beijing, China
2University of Chinese Academy of Sciences, Beijing, China
3Guangzhou Hoffmann Institute of Immunology, School of Basic Sciences, Guangzhou Medical University, Guangzhou, China
4Department of Biological Science, Florida State University, Tallahassee, USA

Tóm tắt

More and more studies have shown chromatin remodelers and histone modifiers play essential roles in regulating developmental patterns by organizing specific chromosomal architecture to establish programmed transcriptional profiles, with implications that histone chaperones execute a coordinating role in these processes. Chromatin assembly factor-1 (CAF-1), an evolutionarily conserved three-subunit protein complex, was identified as a histone chaperone coupled with DNA replication and repair in cultured mammalian cells and yeasts. Interestingly, recent findings indicate CAF-1 may have important regulatory roles during development by interacting with specific transcription factors and epigenetic regulators. In this review, we focus on the essential roles of CAF-1 in regulating heterochromatin organization, asymmetric cell division, and specific signal transduction through epigenetic modulations of the chromatin. In the end, we aim at providing a current image of facets of CAF-1 as a histone chaperone to orchestrate cell proliferation and differentiation during multi-cellular organism development.

Tài liệu tham khảo

Eccleston A, Cesari F, Skipper M (2013) Transcription and epigenetics. Nature 502(7472):461. doi:10.1038/502461a Landry JW, Banerjee S, Taylor B, Aplan PD, Singer A, Wu C (2011) Chromatin remodeling complex NURF regulates thymocyte maturation. Genes Dev 25(3):275–286. doi:10.1101/gad.2007311 Song H, Spichiger-Haeusermann C, Basler K (2009) The ISWI-containing NURF complex regulates the output of the canonical Wingless pathway. EMBO Rep 10(10):1140–1146. doi:10.1038/embor.2009.157 Saitou M, Kagiwada S, Kurimoto K (2012) Epigenetic reprogramming in mouse pre-implantation development and primordial germ cells. Development 139(1):15–31. doi:10.1242/dev.050849 Cantone I, Fisher AG (2013) Epigenetic programming and reprogramming during development. Nat Struct Mol Biol 20(3):282–289. doi:10.1038/nsmb.2489 Moshkin YM, Kan TW, Goodfellow H, Bezstarosti K, Maeda RK, Pilyugin M, Karch F, Bray SJ, Demmers JA, Verrijzer CP (2009) Histone chaperones ASF1 and NAP1 differentially modulate removal of active histone marks by LID-RPD3 complexes during NOTCH silencing. Mol Cell 35(6):782–793. doi:10.1016/j.molcel.2009.07.020 Goodfellow H, Krejci A, Moshkin Y, Verrijzer CP, Karch F, Bray SJ (2007) Gene-specific targeting of the histone chaperone asf1 to mediate silencing. Dev Cell 13(4):593–600. doi:10.1016/j.devcel.2007.08.021 Jullien J, Astrand C, Szenker E, Garrett N, Almouzni G, Gurdon JB (2012) HIRA dependent H3.3 deposition is required for transcriptional reprogramming following nuclear transfer to Xenopus oocytes. Epigenet Chromatin 5(1):17. doi:10.1186/1756-8935-5-17 Szenker E, Lacoste N, Almouzni G (2012) A developmental requirement for HIRA-dependent H3.3 deposition revealed at gastrulation in Xenopus. Cell reports 1(6):730–740. doi:10.1016/j.celrep.2012.05.006 Hajkova P, Ancelin K, Waldmann T, Lacoste N, Lange UC, Cesari F, Lee C, Almouzni G, Schneider R, Surani MA (2008) Chromatin dynamics during epigenetic reprogramming in the mouse germ line. Nature 452(7189):877–881. doi:10.1038/nature06714 Smith S, Stillman B (1989) Purification and characterization of CAF-I, a human cell factor required for chromatin assembly during DNA replication in vitro. Cell 58(1):15–25 Quivy JP, Gerard A, Cook AJ, Roche D, Almouzni G (2008) The HP1-p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat Struct Mol Biol 15(9):972–979 Polo SE, Roche D, Almouzni G (2006) New histone incorporation marks sites of UV repair in human cells. Cell 127(3):481–493. doi:10.1016/j.cell.2006.08.049 Ye X, Franco AA, Santos H, Nelson DM, Kaufman PD, Adams PD (2003) Defective S phase chromatin assembly causes DNA damage, activation of the S phase checkpoint, and S phase arrest. Mol Cell 11(2):341–351 Baldeyron C, Soria G, Roche D, Cook AJ, Almouzni G (2011) HP1alpha recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J Cell Biol 193(1):81–95. doi:10.1083/jcb.201101030 Quivy JP, Roche D, Kirschner D, Tagami H, Nakatani Y, Almouzni G (2004) A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J 23(17):3516–3526. doi:10.1038/sj.emboj.7600362 Adam S, Polo SE, Almouzni G (2013) Transcription recovery after DNA damage requires chromatin priming by the H3.3 histone chaperone HIRA. Cell 155(1):94–106. doi:10.1016/j.cell.2013.08.029 Nakano S, Stillman B, Horvitz HR (2011) Replication-coupled chromatin assembly generates a neuronal bilateral asymmetry in C. elegans. Cell 147(7):1525–1536. doi:10.1016/j.cell.2011.11.053 Yu Z, Wu H, Chen H, Wang R, Liang X, Liu J, Li C, Deng WM, Jiao R (2013) CAF-1 promotes Notch signaling through epigenetic control of target gene expression during Drosophila development. Development 140(17):3635–3644. doi:10.1242/dev.094599 Huang H, Yu Z, Zhang S, Liang X, Chen J, Li C, Ma J, Jiao R (2010) Drosophila CAF-1 regulates HP1-mediated epigenetic silencing and pericentric heterochromatin stability. J Cell Sci 123(Pt 16):2853–2861. doi:10.1242/jcs.063610 Zeng A, Li YQ, Wang C, Han XS, Li G, Wang JY, Li DS, Qin YW, Shi Y, Brewer G, Jing Q (2013) Heterochromatin protein 1 promotes self-renewal and triggers regenerative proliferation in adult stem cells. J Cell Biol 201(3):409–425. doi:10.1083/jcb.201207172 Groth A, Rocha W, Verreault A, Almouzni G (2007) Chromatin challenges during DNA replication and repair. Cell 128(4):721–733. doi:10.1016/j.cell.2007.01.030 Li Q, Zhou H, Wurtele H, Davies B, Horazdovsky B, Verreault A, Zhang Z (2008) Acetylation of histone H3 lysine 56 regulates replication-coupled nucleosome assembly. Cell 134(2):244–255. doi:10.1016/j.cell.2008.06.018 Das C, Lucia MS, Hansen KC, Tyler JK (2009) CBP/p300-mediated acetylation of histone H3 on lysine 56. Nature 459(7243):113–117. doi:10.1038/nature07861 Tjeertes JV, Miller KM, Jackson SP (2009) Screen for DNA-damage-responsive histone modifications identifies H3K9Ac and H3K56Ac in human cells. EMBO J 28(13):1878–1889. doi:10.1038/emboj.2009.119 Vempati RK, Jayani RS, Notani D, Sengupta A, Galande S, Haldar D (2010) p300-mediated acetylation of histone H3 lysine 56 functions in DNA damage response in mammals. J Biol Chem 285(37):28553–28564. doi:10.1074/jbc.M110.149393 Burgess RJ, Zhou H, Han J, Zhang Z (2010) A role for Gcn5 in replication-coupled nucleosome assembly. Mol Cell 37(4):469–480. doi:10.1016/j.molcel.2010.01.020 Allis CD, Chicoine LG, Richman R, Schulman IG (1985) Deposition-related histone acetylation in micronuclei of conjugating Tetrahymena. Proc Natl Acad Sci USA 82(23):8048–8052 Sobel RE, Cook RG, Allis CD (1994) Non-random acetylation of histone H4 by a cytoplasmic histone acetyltransferase as determined by novel methodology. J Biol Chem 269(28):18576–18582 Sobel RE, Cook RG, Perry CA, Annunziato AT, Allis CD (1995) Conservation of deposition-related acetylation sites in newly synthesized histones H3 and H4. Proc Natl Acad Sci USA 92(4):1237–1241 Verreault A, Kaufman PD, Kobayashi R, Stillman B (1996) Nucleosome assembly by a complex of CAF-1 and acetylated histones H3/H4. Cell 87(1):95–104 Zhang H, Han J, Kang B, Burgess R, Zhang Z (2012) Human histone acetyltransferase 1 protein preferentially acetylates H4 histone molecules in H3.1-H4 over H3.3-H4. J Biol Chem 287(9):6573–6581. doi:10.1074/jbc.M111.312637 Ma XJ, Wu J, Altheim BA, Schultz MC, Grunstein M (1998) Deposition-related sites K5/K12 in histone H4 are not required for nucleosome deposition in yeast. Proc Natl Acad Sci USA 95(12):6693–6698 Mello JA, Sillje HH, Roche DM, Kirschner DB, Nigg EA, Almouzni G (2002) Human Asf1 and CAF-1 interact and synergize in a repair-coupled nucleosome assembly pathway. EMBO Rep 3(4):329–334. doi:10.1093/embo-reports/kvf068 Shibahara K, Stillman B (1999) Replication-dependent marking of DNA by PCNA facilitates CAF-1-coupled inheritance of chromatin. Cell 96(4):575–585 Winkler DD, Zhou H, Dar MA, Zhang Z, Luger K (2012) Yeast CAF-1 assembles histone (H3-H4)2 tetramers prior to DNA deposition. Nucleic Acids Res 40(20):10139–10149. doi:10.1093/nar/gks812 Maison C, Almouzni G (2004) HP1 and the dynamics of heterochromatin maintenance. Nat Rev Mol Cell Biol 5(4):296–304. doi:10.1038/nrm1355 Huang S, Zhou H, Tarara J, Zhang Z (2007) A novel role for histone chaperones CAF-1 and Rtt106p in heterochromatin silencing. EMBO J 26(9):2274–2283. doi:10.1038/sj.emboj.7601670 Enomoto S, Berman J (1998) Chromatin assembly factor I contributes to the maintenance, but not the re-establishment, of silencing at the yeast silent mating loci. Genes Dev 12(2):219–232 Enomoto S, McCune-Zierath PD, Gerami-Nejad M, Sanders MA, Berman J (1997) RLF2, a subunit of yeast chromatin assembly factor-I, is required for telomeric chromatin function in vivo. Genes Dev 11(3):358–370 Kaufman PD, Kobayashi R, Stillman B (1997) Ultraviolet radiation sensitivity and reduction of telomeric silencing in Saccharomyces cerevisiae cells lacking chromatin assembly factor-I. Genes Dev 11(3):345–357 Houlard M, Berlivet S, Probst AV, Quivy JP, Hery P, Almouzni G, Gerard M (2006) CAF-1 is essential for heterochromatin organization in pluripotent embryonic cells. PLoS Genet 2(11):e181. doi:10.1371/journal.pgen.0020181 Loyola A, Tagami H, Bonaldi T, Roche D, Quivy JP, Imhof A, Nakatani Y, Dent SY, Almouzni G (2009) The HP1alpha-CAF1-SetDB1-containing complex provides H3K9me1 for Suv39-mediated K9me3 in pericentric heterochromatin. EMBO Rep 10(7):769–775. doi:10.1038/embor.2009.90 Ciccia A, Elledge SJ (2010) The DNA damage response: making it safe to play with knives. Mol Cell 40(2):179–204. doi:10.1016/j.molcel.2010.09.019 Tamburini BA, Tyler JK (2005) Localized histone acetylation and deacetylation triggered by the homologous recombination pathway of double-strand DNA repair. Mol Cell Biol 25(12):4903–4913. doi:10.1128/MCB.25.12.4903-4913.2005 Papamichos-Chronakis M, Krebs JE, Peterson CL (2006) Interplay between Ino80 and Swr1 chromatin remodeling enzymes regulates cell cycle checkpoint adaptation in response to DNA damage. Genes Dev 20(17):2437–2449. doi:10.1101/gad.1440206 Gaillard PH, Martini EM, Kaufman PD, Stillman B, Moustacchi E, Almouzni G (1996) Chromatin assembly coupled to DNA repair: a new role for chromatin assembly factor I. Cell 86(6):887–896 Nabatiyan A, Szuts D, Krude T (2006) Induction of CAF-1 expression in response to DNA strand breaks in quiescent human cells. Mol Cell Biol 26(5):1839–1849. doi:10.1128/MCB.26.5.1839-1849.2006 Jiao R, Harrigan JA, Shevelev I, Dietschy T, Selak N, Indig FE, Piotrowski J, Janscak P, Bohr VA, Stagljar I (2007) The Werner syndrome protein is required for recruitment of chromatin assembly factor 1 following DNA damage. Oncogene 26(26):3811–3822. doi:10.1038/sj.onc.1210150 Jiao R, Bachrati CZ, Pedrazzi G, Kuster P, Petkovic M, Li JL, Egli D, Hickson ID, Stagljar I (2004) Physical and functional interaction between the Bloom’s syndrome gene product and the largest subunit of chromatin assembly factor 1. Mol Cell Biol 24(11):4710–4719. doi:10.1128/MCB.24.11.4710-4719.2004 Fussner E, Djuric U, Strauss M, Hotta A, Perez-Iratxeta C, Lanner F, Dilworth FJ, Ellis J, Bazett-Jones DP (2011) Constitutive heterochromatin reorganization during somatic cell reprogramming. EMBO J 30(9):1778–1789. doi:10.1038/emboj.2011.96 Shermoen AW, McCleland ML, O’Farrell PH (2010) Developmental control of late replication and S phase length. Curr Biol 20(23):2067–2077. doi:10.1016/j.cub.2010.10.021 Lis JT (2007) Imaging Drosophila gene activation and polymerase pausing in vivo. Nature 450(7167):198–202. doi:10.1038/nature06324 Ebert A, Lein S, Schotta G, Reuter G (2006) Histone modification and the control of heterochromatic gene silencing in Drosophila. Chromosome Res 14(4):377–392. doi:10.1007/s10577-006-1066-1 Zielke N, Kim KJ, Tran V, Shibutani ST, Bravo MJ, Nagarajan S, van Straaten M, Woods B, von Dassow G, Rottig C, Lehner CF, Grewal SS, Duronio RJ, Edgar BA (2011) Control of Drosophila endocycles by E2F and CRL4(CDT2). Nature 480(7375):123–127. doi:10.1038/nature10579 Klapholz B, Dietrich BH, Schaffner C, Heredia F, Quivy JP, Almouzni G, Dostatni N (2009) CAF-1 is required for efficient replication of euchromatic DNA in Drosophila larval endocycling cells. Chromosoma 118(2):235–248. doi:10.1007/s00412-008-0192-2 Calado R, Young N (2012) Telomeres in disease. F1000 Med Rep 4:8. doi:10.3410/M4-8 Mozgova I, Mokros P, Fajkus J (2010) Dysfunction of chromatin assembly factor 1 induces shortening of telomeres and loss of 45S rDNA in Arabidopsis thaliana. Plant Cell 22(8):2768–2780. doi:10.1105/tpc.110.076182 Sedkov Y, Cho E, Petruk S, Cherbas L, Smith ST, Jones RS, Cherbas P, Canaani E, Jaynes JB, Mazo A (2003) Methylation at lysine 4 of histone H3 in ecdysone-dependent development of Drosophila. Nature 426(6962):78–83. doi:10.1038/nature02080 Linger J, Tyler JK (2005) The yeast histone chaperone chromatin assembly factor 1 protects against double-strand DNA-damaging agents. Genetics 171(4):1513–1522. doi:10.1534/genetics.105.043000 Kirik A, Pecinka A, Wendeler E, Reiss B (2006) The chromatin assembly factor subunit FASCIATA1 is involved in homologous recombination in plants. Plant Cell 18(10):2431–2442. doi:10.1105/tpc.106.045088 Endo M, Ishikawa Y, Osakabe K, Nakayama S, Kaya H, Araki T, Shibahara K, Abe K, Ichikawa H, Valentine L, Hohn B, Toki S (2006) Increased frequency of homologous recombination and T-DNA integration in Arabidopsis CAF-1 mutants. The EMBO journal 25(23):5579–5590. doi:10.1038/sj.emboj.7601434 Song Y, He F, Xie G, Guo X, Xu Y, Chen Y, Liang X, Stagljar I, Egli D, Ma J, Jiao R (2007) CAF-1 is essential for Drosophila development and involved in the maintenance of epigenetic memory. Dev Biol 311(1):213–222. doi:10.1016/j.ydbio.2007.08.039 Schuermann D, Molinier J, Fritsch O, Hohn B (2005) The dual nature of homologous recombination in plants. Trends Genet 21(3):172–181. doi:10.1016/j.tig.2005.01.002 Friesner J, Britt AB (2003) Ku80- and DNA ligase IV-deficient plants are sensitive to ionizing radiation and defective in T-DNA integration. Plant J 34(4):427–440 Downs JA, Kosmidou E, Morgan A, Jackson SP (2003) Suppression of homologous recombination by the Saccharomyces cerevisiae linker histone. Mol Cell 11(6):1685–1692 Prado F, Aguilera A (2005) Partial depletion of histone H4 increases homologous recombination-mediated genetic instability. Mol Cell Biol 25(4):1526–1536. doi:10.1128/MCB.25.4.1526-1536.2005 Fischer S, Prykhozhij S, Rau MJ, Neumann CJ (2007) Mutation of zebrafish caf-1b results in S phase arrest, defective differentiation, and p53-mediated apoptosis during organogenesis. Cell Cycle 6(23):2962–2969 Wen P, Quan Z, Xi R (2012) The biological function of the WD40 repeat-containing protein p55/Caf1 in Drosophila. Dev Dyn 241(3):455–464. doi:10.1002/dvdy.23730 Hoek M, Stillman B (2003) Chromatin assembly factor 1 is essential and couples chromatin assembly to DNA replication in vivo. Proc Natl Acad Sci USA 100(21):12183–12188. doi:10.1073/pnas.1635158100 Quivy JP, Grandi P, Almouzni G (2001) Dimerization of the largest subunit of chromatin assembly factor 1: importance in vitro and during Xenopus early development. EMBO J 20(8):2015–2027. doi:10.1093/emboj/20.8.2015 Kaya H, Shibahara KI, Taoka KI, Iwabuchi M, Stillman B, Araki T (2001) FASCIATA genes for chromatin assembly factor-1 in arabidopsis maintain the cellular organization of apical meristems. Cell 104(1):131–142 Kats ES, Albuquerque CP, Zhou H, Kolodner RD (2006) Checkpoint functions are required for normal S-phase progression in Saccharomyces cerevisiae RCAF- and CAF-I-defective mutants. Proc Natl Acad Sci USA 103(10):3710–3715. doi:10.1073/pnas.0511102103 Haber JE, Braberg H, Wu Q, Alexander R, Haase J, Ryan C, Lipkin-Moore Z, Franks-Skiba KE, Johnson T, Shales M, Lenstra TL, Holstege FC, Johnson JR, Bloom K, Krogan NJ (2013) Systematic triple-mutant analysis uncovers functional connectivity between pathways involved in chromosome regulation. Cell reports 3(6):2168–2178. doi:10.1016/j.celrep.2013.05.007 Pires-daSilva A, Sommer RJ (2003) The evolution of signalling pathways in animal development. Nat Rev Genet 4(1):39–49. doi:10.1038/nrg977 Schonrock N, Exner V, Probst A, Gruissem W, Hennig L (2006) Functional genomic analysis of CAF-1 mutants in Arabidopsis thaliana. J Biol Chem 281(14):9560–9568. doi:10.1074/jbc.M513426200 Autran D, Baroux C, Raissig MT, Lenormand T, Wittig M, Grob S, Steimer A, Barann M, Klostermeier UC, Leblanc O, Vielle-Calzada JP, Rosenstiel P, Grimanelli D, Grossniklaus U (2011) Maternal epigenetic pathways control parental contributions to Arabidopsis early embryogenesis. Cell 145(5):707–719. doi:10.1016/j.cell.2011.04.014 Yatim A, Benne C, Sobhian B, Laurent-Chabalier S, Deas O, Judde JG, Lelievre JD, Levy Y, Benkirane M (2012) NOTCH1 nuclear interactome reveals key regulators of its transcriptional activity and oncogenic function. Mol Cell 48(3):445–458. doi:10.1016/j.molcel.2012.08.022 Mourikis P, Lake RJ, Firnhaber CB, DeDecker BS (2010) Modifiers of notch transcriptional activity identified by genome-wide RNAi. BMC Dev Biol 10:107. doi:10.1186/1471-213X-10-107 Mueller GC, Kajiwara K, Kim UH, Graham J (1978) Proposed coupling of chromatin replication, hormone action, and cell differentiation. Cancer Res 38(11 Pt 2):4041–4045 Tsubouchi T, Soza-Ried J, Brown K, Piccolo FM, Cantone I, Landeira D, Bagci H, Hochegger H, Merkenschlager M, Fisher AG (2013) DNA synthesis is required for reprogramming mediated by stem cell fusion. Cell 152(4):873–883. doi:10.1016/j.cell.2013.01.012 Chia G, Egli D (2013) Connecting the cell cycle with cellular identity. Cell Reprogram 15(5):356–366. doi:10.1089/cell.2013.0041 Newmark PA, Sanchez Alvarado A (2002) Not your father’s planarian: a classic model enters the era of functional genomics. Nat Rev Genet 3(3):210–219. doi:10.1038/nrg759 Wagner DE, Wang IE, Reddien PW (2011) Clonogenic neoblasts are pluripotent adult stem cells that underlie planarian regeneration. Science 332(6031):811–816. doi:10.1126/science.1203983 Newmark PA, Sanchez Alvarado A (2000) Bromodeoxyuridine specifically labels the regenerative stem cells of planarians. Dev Biol 220(2):142–153. doi:10.1006/dbio.2000.9645 Wenemoser D, Lapan SW, Wilkinson AW, Bell GW, Reddien PW (2012) A molecular wound response program associated with regeneration initiation in planarians. Genes Dev 26(9):988–1002. doi:10.1101/gad.187377.112 Kaufman PD, Kobayashi R, Kessler N, Stillman B (1995) The p150 and p60 subunits of chromatin assembly factor I: a molecular link between newly synthesized histones and DNA replication. Cell 81(7):1105–1114 Smith S, Stillman B (1991) Stepwise assembly of chromatin during DNA replication in vitro. EMBO J 10(4):971–980 Tyler JK, Collins KA, Prasad-Sinha J, Amiott E, Bulger M, Harte PJ, Kobayashi R, Kadonaga JT (2001) Interaction between the Drosophila CAF-1 and ASF1 chromatin assembly factors. Mol Cell Biol 21(19):6574–6584 Wei C, Liu J, Yu Z, Zhang B, Gao G, Jiao R (2013) TALEN or Cas9, rapid, efficient and specific choices for genome modifications. J Genet Genom 40(6):281–289. doi:10.1016/j.jgg.2013.03.013