Histone H3 lysine 9 methylation is an epigenetic imprint of facultative heterochromatin
Tóm tắt
Từ khóa
Tài liệu tham khảo
Rea, S. et al. Regulation of chromatin struture by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).
Lachner, M., O'Carroll, D., Rea, S., Mechtler, K. & Jenuwein, T. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 410, 116–120 (2001).
Bannister, A.J. et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 410, 120–124 (2001).
Nakayama, J.-I., Rice, J.C., Strahl, B.D., Allis, C.D. & Grewal, S.I.S. Role of histone H3 lysine 9 methylation in epigenetic control of heterochromatin assembly. Science 292, 110–113 (2001).
Jeppesen, P., Mitchell, A., Turner, B.M. & Perry, P. Antibodies to defined histone epitopes reveal variations in chromatin conformation and underacetylation of centromeric heterochromatin in human metaphase chromosomes. Chromosoma 101, 322–332 (1992).
Ekwall, K., Olsson, T., Turner, B.M., Cranston, G. & Allshire, R.C. Transient inhibition of histone deacetylation alters the structural and functional imprint at fission yeast centromeres. Cell 91, 1021–1032 (1997).
Taddei, A., Maison, C., Roche, D. & Almouzni, G. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nature Cell Biol. 3, 114–120 (2001).
Peters, A.H.F.M. et al. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107, 323–337 (2001).
Avner, P. & Heard, E. X chromosome inactivation: counting, choice and initiation. Nature Rev. Genet. 2, 59–67 (2001).
Barr, M.L. & Bertram, E.G. A morphological distinction between neurones of the male and female, and the behaviour of the nucleolar satellite during accelerated nucleoprotein synthesis. Nature 163, 676–677 (1949).
Brockdorff, N. et al. The product of the mouse Xist gene is a 15 kb inactive X specific transcript containing no conserved ORF and located in the nucleus. Cell 71, 515–526 (1992).
Brown, C.J. et al. The human XIST gene: analysis of a 17 kb inactive X specific RNAthat contains conserved repeats and is highly localised within the nucleus. Cell 71, 527–542 (1992).
Lee, J.T., Strauss, W.M., Dausman, J.A. & Jaenisch, R. A 450 kb transgene displays properties of the mammalian X-inactivation center. Cell 86, 83–94 (1996).
Lee, J.T. & Lu, N. Targeted mutagenesis of Tsix leads to nonrandom X-inactivation. Cell 99, 47–57 (1999).
Jeppesen, P. & Turner, B.M. The inactive X chromosome in female mammals is distinguished by a lack of H4 acetylation, a cytogenetic marker for gene expression. Cell 74, 281–289 (1993).
Boggs, B.A., Connors, B., Sobel, R.E., Chinault, A.C. & Allis, C.D. Reduced levels of histone H3 acetylation on the inactive X chromosome in human females. Chromosoma 105, 303–309 (1996).
Costanzi, C. & Pherson, J.R. Histone macroH2A1 is concentrated in the inactive X chromosome of female mammals. Nature 393, 599–601 (1998).
Perche, P.-Y. et al. Higher concentrations of histone macroH2A in the Barr body are correlated with higher nucleosome density. Curr. Biol. 10, 1531–1534 (2000).
Duthie, S.M. et al. Xist RNA exhibits a banded localization on the inactive X chromosome and is excluded from autosomal material in cis. Hum. Mol. Gen. 8, 195–204 (1999).
Minc, E., Allory, Y., Worman, H.J., Courvalin, J.-C. & Buendia, B. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108, 220–234 (1999).
Boggs, B.A. et al. Differentially methylated forms of histone H3 show unique association patterns with inactive human X chromosomes. Nature Genet. DOI: 10.1038/ng787 (2001).
Keohane, A.M., O'Neill, L.P., Belyaev, N.D., Lavender, J.S. & Turner, B.M. X-inactivation and histone H4 acetylation in embryonic stem cells. Dev. Biol. 180, 618–630 (1996).
Mermoud, J.E., Costanzi, C., Pherson, J.R. & Brockdorff, N. Histone macroH2A1.2 relocates to the inactive X chromosome after initiation and propagation of X-inactivation. J. Cell Biol. 147, 1399–1408 (1999).
Csankovszki, G., Panning, B., Bates, B., Pherson, J.R. & Jaenisch, R. Conditional deletion of Xist disrupts histone macroH2A localization but not maintenance of X inactivation. Nature Genet. 22, 323–324 (1999).
Wutz, A. & Jaenisch, R. A shift from reversible to irreversible X inactivation is triggered during ES cell differentiation. Mol. Cell 5, 695–705 (2000).
Tachibana, M., Sugimoto, K., Fukushima, T. & Shinkai, Y. SET domain–containing protein, G9a, is a novel lysine-preferring mammalian histone methyltransferase with hyperactivity and specific selectivity to lysines 9 and 27 of histone H3. J. Biol. Chem. 276, 25309–25317 (2001).
Aagaard, L. et al. Functional mammalian homologues of the Drosophila PEV modifier Su(var)3-9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J. 18, 1923–1938 (1999).