Histomorphologie und Pathogenese der diabetischen Nephropathie

Der Nephrologe - Tập 15 - Trang 145-152 - 2020
K. Amann1, C. Daniel1
1Abt. Nephropathologie, Pathologisches Institut, Universitätsklinikum Erlangen-Nürnberg, Erlangen, Deutschland

Tóm tắt

Diabetes mellitus und Organbeteiligungen bzw. assoziierte Erkrankungen sind insgesamt häufig und zeigen nicht nur in den westlichen Ländern eine zunehmende Inzidenz, sodass sie mittlerweile ein großes weltweites gesundheitspolitisches Problem darstellen. Diabetes mellitus ist v. a. auch deswegen so ernst zu nehmen, da die Inzidenz auch bei Kindern und jungen Erwachsenen bedrohlich zunimmt; Schätzungen gehen davon aus, dass in den USA im Jahr 2025 jedes dritte 2000 geborene Individuum an Diabetes mellitus leiden wird, was langfristig die Lebenserwartung der Bevölkerung dramatisch reduziert. Neben kardiovaskulären Erkrankungen, wie z. B. Bluthochdruck, koronare Herzkrankheit und Schlaganfall, stellt v. a. die Nierenbeteiligung bei Diabetes mellitus, die sog. diabetische Nephropathie (DN), ein zunehmendes und ernsthaftes Problem dar. In Deutschland ist die DN mittlerweile mit etwa 35 % mit weitem Abstand die häufigste Ursache der terminalen Niereninsuffizienz. Im Folgenden soll auf die Pathogenese und Morphologie der DN unter besonderer Berücksichtigung neuer Therapieprinzipien eingegangen werden.

Tài liệu tham khảo

Groop PH, Thomas MC, Moran JL, Waden J, Thorn LM, Makinen VP et al (2009) The presence and severity of chronic kidney disease predicts all-cause mortality in type 1 diabetes. Diabetes 58:1651–1658 Tang SC (2010) Diabetic nephropathy: a global and growing threat. Hong kong Med J 16:244–245 Sharaf El Din UAA, Salem MM, Abdulazim DO (2017) Diabetic nephropathy: time to withhold developmentandprogression—a review. J Adv Res 8:363–373 American Diabetes A (2013) Standards of medical care in diabetes—2013. Diabetes Care 36(Suppl 1):S11–S66 Pfister F, Pfister E, Daniel C, Büttner-Herold M, Amann K (2017) Histopathologie der diabetischen Nephropathie. Nephrologe 12:400–406 Gonzalez Suarez ML, Thomas DB, Barisoni L, Fornoni A (2013) Diabetic nephropathy: Is it time yet for routine kidney biopsy? World J Diabetes 4(6):245–255 Chagnac A, Weinstein T, Korzets A, Ramadan E, Hirsch J, Gafter U (2000) Glomerular hemodynamics in severe obesity. Am J Physiol Renal Physiol 278:F817–F822 Tomaszewski M, Charchar FJ, Maric C, McClure J, Crawford L, Grzeszczak W et al (2007) Glomerular hyperfiltration: a new marker of metabolic risk. Kidney Int 71:816–821 Bosma RJ, van der Heide JJ, Oosterop EJ, de Jong PE, Navis G (2004) Body mass index is associated with altered renal hemodynamics in non-obese healthy subjects. Kidney Int 65:259–265 Ingelfinger JR (2003) Forestalling fibrosis. N Engl J Med 349:2265–2266 Praga M (2005) Synergy of low nephron number and obesity: a new focus on hyperfiltration nephropathy. Nephrol Dial Transplant 20:2594–2597 Brenner BM, Garcia DL, Anderson S (1988) Glomeruli and blood pressure. Less of one, more the other? Am J Hypertens 1:335–347 Saxena AB, Myers BD, Derby G, Blouch KL, Yan J, Ho B et al (2006) Adaptive hyperfiltration in the aging kidney after contralateral nephrectomy. Am J Physiol Renal Physiol 291:F629–F634 Brenner BM, Lawler EV, Mackenzie HS (1996) The hyperfiltration theory: a paradigm shift in nephrology. Kidney Int 49:1774–1777 Chuang PY, Dai Y, Liu R, He H, Kretzler M, Jim B et al (2011) Alteration of forkhead box O (foxo4) acetylation mediates apoptosis of podocytes in diabetes mellitus. Plos One 6:e23566 Isermann B, Vinnikov IA, Madhusudhan T, Herzog S, Kashif M, Blautzik J et al (2007) Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med 13:1349–1358 Susztak K, Raff AC, Schiffer M, Bottinger EP (2006) Glucose-induced reactive oxygen species cause apoptosis of podocytes and podocyte depletion at the onset of diabetic nephropathy. Diabetes 55:225–233 Wolf G, Chen S, Ziyadeh FN (2005) From the periphery of the glomerular capillary wall toward the center of disease: podocyte injury comes of age in diabetic nephropathy. Diabetes 54:1626–1634 Meyer TW, Bennett PH, Nelson RG (1999) Podocyte number predicts long-term urinary albumin excretion in Pima Indians with Type II diabetes and microalbuminuria. Diabetologia 42:1341–1344 Pagtalunan ME, Miller PL, Jumping-Eagle S, Nelson RG, Myers BD, Rennke HG et al (1997) Podocyte loss and progressive glomerular injury in type II diabetes. J Clin Invest 99:342–348 Nakamura T, Ushiyama C, Suzuki S, Hara M, Shimada N, Ebihara I et al (2000) The urinary podocyte as a marker for the differential diagnosis of idiopathic focal glomerulosclerosis and minimal-change nephrotic syndrome. Am J Nephrol 20:175–179 Lewko B, Stepinski J (2009) Hyperglycemia and mechanical stress: targeting the renal podocyte. J Cell Physiol 221:288–295 Gross ML, El-Shakmak A, Szabo A, Koch A, Kuhlmann A, Munter K et al (2003) ACE-inhibitors but not endothelin receptor blockers prevent podocyte loss in early diabetic nephropathy. Diabetologia 46:856–868 Welsh GI, Coward RJ (2010) Podocytes, glucose and insulin. Curr Opin Nephrol Hypertens 19:379–384 Dronavalli S, Duka I, Bakris GL (2008) The pathogenesis of diabetic nephropathy. Nat Clin Pract Endocrinol Metab 4(8):444–452 Müller TD et al (2019) Glucagon-like peptide 1 (GLP-1). Mol Metab 30:72–130 McIntosh CH (2008) Incretin-based therapies for type 2 diabetes. Can J Diabetes 32(2):131–139 Madsbad S (2009) Treatment of type 2 diabetes with incretin-based therapies. Lancet 373(9662):438–439 Skov J et al (2013) Glucagon-like peptide‑1 (GLP-1): effect on kidney hemodynamics and renin-angiotensin-aldosterone system in healthy men. J Clin Endocrinol Metab 98(4):E664–E671 Marso SP et al (2016) Semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N Engl J Med 375(19):1834–1844 Mann JFE et al (2017) Liraglutide and renal outcomes in type 2 diabetes. N Engl J Med 377(9):839–848 Muskiet MHA et al (2018) Lixisenatide and renal outcomes in patients with type 2 diabetes and acute coronary syndrome: an exploratory analysis of the ELIXA randomised, placebo-controlled trial. Lancet Diabetes Endocrinol 6(11):859–869 Schernthaner G, Mogensen CE, Schernthaner GH (2014) The effects of GLP‑1 analogues, DPP‑4 inhibitors and SGLT2 inhibitors on the renal system. Diab Vasc Dis Res 11(5):306–323 Luippold G et al (2018) Differences in kidney-specific DPP‑4 inhibition by linagliptin and sitagliptin. Diabetes Res Clin Pract 143:199–203 Komala MG et al (2013) Sodium glucose cotransporter 2 and the diabetic kidney. Curr Opin Nephrol Hypertens 22(1):113–119 Thomas MC, Cherney DZI (2018) The actions of SGLT2 inhibitors on metabolism, renal function and blood pressure. Diabetologia 61(10):2098–2107 Vallon V et al (2014) SGLT2 inhibitor empagliflozin reduces renal growth and albuminuria in proportion to hyperglycemia and prevents glomerular hyperfiltration in diabetic Akita mice. Am J Physiol Renal Physiol 306(2):F194–F204 Kelly MS et al (2019) Efficacy and renal outcomes of SGLT2 inhibitors in patients with type 2 diabetes and chronic kidney disease. Postgrad Med 131(1):31–42 Zou H, Zhou B, Xu G (2017) SGLT2 inhibitors: a novel choice for the combination therapy in diabetic kidney disease. Cardiovasc Diabetol. https://doi.org/10.1186/s12933-017-0547-1 Osterby R, Hartmann A, Nyengaard JR, Bangstad HJ (2002) Development of renal structural lesions in type‑1 diabetic patients with microalbuminuria. Observations by light microscopy in 8‑year follow-up biopsies. Virchows Arch 440:94–101 Osterby R, Tapia J, Nyberg G, Tencer J, Willner J, Rippe B et al (2001) Renal structures in type 2 diabetic patients with elevated albumin excretion rate. APMIS 109:751–761 Najafian B, Alpers CE, Fogo AB (2011) Pathology of human diabetic nephropathy. Contrib Nephrol 170:36–47 Saito Y, Kida H, Takeda S, Yoshimura M, Yokoyama H, Koshino Y et al (1988) Mesangiolysis in diabetic glomeruli: its role in the formation of nodular lesions. Kidney Int 34:389–396 Stout LC, Kumar S, Whorton EB (1993) Focal mesangiolysis and the pathogenesis of the Kimmelstiel-Wilson nodule. Hum Pathol 24:77–89 Brezniceanu ML, Liu F, Wei CC, Tran S, Sachetelli S, Zhang SL et al (2007) Catalase overexpression attenuates angiotensinogen expression and apoptosis in diabetic mice. Kidney Int 71:912–923 Bagby SP (2007) Diabetic nephropathy and proximal tubule ROS: challenging our glomerulocentricity. Kidney Int 71:1199–1202 Fioretto P, Sutherland DE, Najafian B, Mauer M (2006) Remodeling of renal interstitial and tubular lesions in pancreas transplant recipients. Kidney Int 69:907–912 Bjorn SF, Bangstad HJ, Hanssen KF, Nyberg G, Walker JD, Viberti GC et al (1995) Glomerular epithelial foot processes and filtration slits in IDDM patients. Diabetologia 38:1197–1204 White KE, Bilous RW (2004) Structural alterations to the podocyte are related to proteinuria in type 2 diabetic patients. Nephrol Dial Transplant 19:1437–1440 Tervaert TW, Mooyaart AL, Amann K, Cohen AH, Cook HT, Drachenberg CB et al (2010) Pathologic classification of diabetic nephropathy. J Am Soc Nephrol 21:556–563