Histologic findings in normal breast tissues: comparison to reduction mammaplasty and benign breast disease tissues

Springer Science and Business Media LLC - Tập 133 - Trang 169-177 - 2011
Amy C. Degnim1, Daniel W. Visscher2, Tanya L. Hoskin3, Marlene H. Frost4, Robert A. Vierkant3, Celine M. Vachon5, V. Shane Pankratz3, Derek C. Radisky6, Lynn C. Hartmann7
1Department of Surgery, Mayo Clinic, Rochester, USA
2Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, USA
3Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, USA
4Women’s Cancer Program, Mayo Clinic, Rochester, USA
5Department of Health Sciences Research, Epidemiology, Mayo Clinic, Rochester, USA
6Department of Biochemistry and Molecular Biology, Mayo Clinic, Jacksonville, USA
7Department of Oncology, Mayo Clinic, Rochester, USA

Tóm tắt

Investigations of breast carcinogenesis often rely upon comparisons between cancer tissue and nonmalignant breast tissue. It is unclear how well common reference sources of nonmalignant breast tissues reflect normal breast tissue. Breast tissue samples were evaluated from three sources: (1) normal donor tissues in the Susan G. Komen for the Cure® Tissue Bank at Indiana University Simon Cancer Center (KTB), (2) women who underwent reduction mammaplasty (RM) at Mayo Clinic Rochester, and (3) the Mayo Clinic Benign Breast Disease Cohort Study (BBD). Samples were examined histologically and assessed for proliferative disease and degree of lobular involution. Univariate comparisons were performed among the study groups, and multivariate analyses were performed with logistic regression to assess the association between study group and the presence of epithelial proliferative disease and complete lobular involution. Histologic data were collected for 455 KTB samples, 259 RM samples, and 319 BBD samples. Histologic findings and the frequency of epithelial proliferation were significantly different among the groups. Histologic abnormalities were seen in a minority of the KTB samples (35%), whereas an abnormality was present in 88% of RM tissues and 97.5% of BBD samples. The presence of proliferative disease (with or without atypical hyperplasia) was present in 3.3% of normal donors (3.3%), 17% of RM samples, and 34.9% of BBD samples (P < 0.0001 for each comparison). Multivariate analyses confirmed that these differences remained significant and also showed higher likelihood of complete lobular involution in the normal donor samples compared to RM and BBD tissues. Compared to benign breast disease tissues and reduction mammaplasty tissues, breast tissue samples from normal donors have significantly fewer histologic abnormalities and a higher frequency of more complete lobular involution. Breast tissue samples from normal donors represent a unique tissue resource with histologic features consistent with lower breast cancer risk.

Tài liệu tham khảo

Jin L, Fuchs A, Schnitt SJ et al (1997) Expression of scatter factor and c-met receptor in benign and malignant breast tissue. Cancer 79:749–760 Bernardes JR Jr, Nonogaki S, Seixas MT et al (1999) Effect of a half dose of tamoxifen on proliferative activity in normal breast tissue. Int J Gynaecol Obstet 67:33–38 Ma XJ, Salunga R, Tuggle JT et al (2003) Gene expression profiles of human breast cancer progression. Proc Natl Acad Sci USA 100:5974–5979 Ciris IM, Bozkurt KK, Baspinar S, Kapucuoglu FN (2011) Immunohistochemical COX-2 overexpression correlates with HER-2/neu overexpression in invasive breast carcinomas: a pilot study. Pathol Res Pract 207:182–187 Dedes KJ, Natrajan R, Lambros MB et al (2011) Down-regulation of the miRNA master regulators Drosha and Dicer is associated with specific subgroups of breast cancer. Eur J Cancer 47:138–150 Hartmann LC, Sellers TA, Frost MH et al (2005) Benign breast disease and the risk of breast cancer. N Engl J Med 353:229–237 Degnim AC, Visscher DW, Berman HK et al (2007) Stratification of breast cancer risk in women with atypia: a Mayo cohort study. J Clin Oncol 25:2671–2677 McKian KP, Reynolds CA, Visscher DW et al (2009) Novel breast tissue feature strongly associated with risk of breast cancer. J Clin Oncol 27:5893–5898 Visscher DW, Pankratz VS, Santisteban M et al (2008) Association between cyclooxygenase-2 expression in atypical hyperplasia and risk of breast cancer. J Natl Cancer Inst 100:421–427 Santisteban M, Reynolds C, Barr Fritcher EG et al (2010) Ki67: a time-varying biomarker of risk of breast cancer in atypical hyperplasia. Breast Cancer Res Treat 121:431–437 Madigan MP, Ziegler RG, Benichou J, Byrne C, Hoover RN (1995) Proportion of breast cancer cases in the United States explained by well-established risk factors. J Natl Cancer Inst 87:1681–1685 Susan G. Komen for the Cure Tissue Bank at the IU Simon Cancer Center. https://komentissuebank.iu.edu/. Accessed 23 Aug 2011 Dupont WD, Page DL (1985) Risk factors for breast cancer in women with proliferative breast disease. N Engl J Med 312:146–151 Carter CL, Corle DK, Micozzi MS, Schatzkin A, Taylor PR (1988) A prospective study of the development of breast cancer in 16,692 women with benign breast disease. Am J Epidemiol 128:467–477 London SJ, Connolly JL, Schnitt SJ, Colditz GA (1992) A prospective study of benign breast disease and the risk of breast cancer. JAMA 267:941–944 Milanese TR, Hartmann LC, Sellers TA et al (2006) Age-related lobular involution and risk of breast cancer. J Natl Cancer Inst 98:1600–1607 Pitanguy I, Torres E, Salgado F, Pires Viana GA (2005) Breast pathology and reduction mammaplasty. Plast Reconstr Surg 115:729–734 discussion 735 Boice JD Jr, Persson I, Brinton LA et al (2000) Breast cancer following breast reduction surgery in Sweden. Plast Reconstr Surg 106:755–762 Brown MH, Weinberg M, Chong N, Levine R, Holowaty E (1999) A cohort study of breast cancer risk in breast reduction patients. Plast Reconstr Surg 103:1674–1681 Gail MH, Brinton LA, Byar DP et al (1989) Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81:1879–1886 Rosen PP, Senie R, Schottenfeld D, Ashikari R (1979) Noninvasive breast carcinoma: frequency of unsuspected invasion and implications for treatment. Ann Surg 189:377–382 Chuba PJ, Hamre MR, Yap J et al (2005) Bilateral risk for subsequent breast cancer after lobular carcinoma-in situ: analysis of surveillance, epidemiology, and end results data. J Clin Oncol 23:5534–5541 Fabian CJ, Kimler BF, Zalles CM et al (2000) Short-term breast cancer prediction by random periareolar fine-needle aspiration cytology and the Gail risk model. J Natl Cancer Inst 92:1217–1227 Vierkant RA, Hartmann LC, Pankratz VS et al (2009) Lobular involution: localized phenomenon or field effect? Breast Cancer Res Treat 117:193–196