Hippocampal sparing radiotherapy for glioblastoma patients: a planning study using volumetric modulated arc therapy
Tóm tắt
The purpose of this study is to investigate the potential to reduce exposure of the contralateral hippocampus in radiotherapy for glioblastoma using volumetric modulated arc therapy (VMAT). Datasets of 27 patients who had received 3D conformal radiotherapy (3D-CRT) for glioblastoma with a prescribed dose of 60Gy in fractions of 2Gy were included in this planning study. VMAT plans were optimized with the aim to reduce the dose to the contralateral hippocampus as much as possible without compromising other parameters. Hippocampal dose and treatment parameters were compared to the 3D-CRT plans using the Wilcoxon signed-rank test. The influence of tumour location and PTV size on the hippocampal dose was investigated with the Mann–Whitney-U-test and Spearman’s rank correlation coefficient. The median reduction of the contralateral hippocampus generalized equivalent uniform dose (gEUD) with VMAT was 36 % compared to the original 3D-CRT plans (p < 0.05). Other dose parameters were maintained or improved. The median V30Gy brain could be reduced by 17.9 % (p < 0.05). For VMAT, a parietal and a non-temporal tumour localisation as well as a larger PTV size were predictors for a higher hippocampal dose (p < 0.05). Using VMAT, a substantial reduction of the radiotherapy dose to the contralateral hippocampus for patients with glioblastoma is feasible without compromising other treatment parameters. For larger PTV sizes, less sparing can be achieved. Whether this approach is able to preserve the neurocognitive status without compromising the oncological outcome needs to be investigated in the setting of prospective clinical trials.
Tài liệu tham khảo
Ostrom QT, Gittleman H, Liao P, et al. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol. 2014;16:iv1–63. doi:10.1093/neuonc/nou223.
Diaz AZ, Choi M. Radiation-associated toxicities in the treatment of high-grade gliomas. Semin Oncol. 2014;41:532–40. doi:10.1053/j.seminoncol.2014.06.001.
Klein M, Heimans JJ, Aaronson NK, et al. Effect of radiotherapy and other treatment-related factors on mid-term to long-term cognitive sequelae in low-grade gliomas: a comparative study. Lancet. 2002;360:1361–8. doi:10.1016/S0140-6736(02)11398-5.
Johannesen TB, Lien HH, Hole KH, Lote K. Radiological and clinical assessment of long-term brain tumour survivors after radiotherapy. Radiother Oncol. 2003;69:169–76. doi:10.1016/S0167-8140(03)00192-0.
Douw L, Klein M, Fagel SS, et al. Cognitive and radiological effects of radiotherapy in patients with low-grade glioma: long-term follow-up. Lancet Neurol. 2009;8:810–8. doi:10.1016/S1474-4422(09)70204-2.
Gondi V, Hermann BP, Mehta MP, Tomé WA. Hippocampal dosimetry predicts neurocognitive function impairment after fractionated stereotactic radiotherapy for benign or low-grade adult brain tumors. Int J Radiat Oncol. 2012;83:e487–93. doi:10.1016/j.ijrobp.2011.10.021.
Tallet AV, Azria D, Barlesi F, et al. Neurocognitive function impairment after whole brain radiotherapy for brain metastases: actual assessment. Radiat Oncol. 2012;7:77. doi:10.1186/1748-717X-7-77.
Tsai P, Yang C, Chuang C, et al. Hippocampal dosimetry correlates with the change in neurocognitive function after hippocampal sparing during whole brain radiotherapy : a prospective study. Radiat Oncol. 2015;10:253. doi:10.1186/s13014-015-0562-x.
Acharya MM, Lan ML, Kan VH, et al. Free radical biology & medicine consequences of ionizing radiation-induced damage in human neural stem cells. Free Radic Biol Med. 2010;49:1846–55. doi:10.1016/j.freeradbiomed.2010.08.021.
Kazda T, Jancalek R, Pospisil P, et al. Why and how to spare the hippocampus during brain radiotherapy: the developing role of hippocampal avoidance in cranial radiotherapy. Radiat Oncol. 2014;9:139. doi:10.1186/1748-717X-9-139.
Chera BS, Amdur RJ, Patel P, Mendenhall WM. A radiation oncologist’s guide to contouring the hippocampus. Am J Clin Oncol. 2009;32:20–2. doi:10.1097/COC.0b013e318178e4e8.
Fippel M. Fast Monte Carlo dose calculation for photon beams based on the VMC electron algorithm. Med Phys. 1999;26:1466–75. doi:10.1118/1.598676.
International Commission on Radiation Units and Measurements. Report 83: prescribing, recording, and reporting photon-beam Intensity Modulated Radiation Therapy (IMRT). J ICRU. 2010; 10:NP. doi: 10.1093/jicru/ndq002
Paddick I. A simple scoring ratio to index the conformity of radiosurgical treatment plans. Technical note. J Neurosurg. 2000;93 Suppl 3:219–22. doi:10.3171/jns.2000.93.supplement3.0219.
Niemierko A. A generalized concept of equivalent uniform dose [abstract]. Med Phys. 1999;26:1100.
Niyazi M, Söhn M, Schwarz SB, et al. Radiation treatment parameters for re-irradiation of malignant glioma. Strahlentherapie und Onkol. 2012;188:328–33. doi:10.1007/s00066-011-0055-2.
Canyilmaz E, Uslu GD, Colak F, et al. Comparison of dose distributions hippocampus in high grade gliomas irradiation with linac-based imrt and volumetric arc therapy: a dosimetric study. Springerplus. 2015;4:114.
Marsh JC, Godbole R, Diaz AZ, et al. Sparing of the hippocampus, limbic circuit and neural stem cell compartment during partial brain radiotherapy for glioma: a dosimetric feasibility study. J Med Imaging Radiat Oncol. 2011;55:442–9. doi:10.1111/j.1754-9485.2011.02282.x.
Gebhardt BJ, Dobelbower MC, Ennis WH, et al. Patterns of failure for glioblastoma multiforme following limited-margin radiation and concurrent temozolomide. Radiat Oncol. 2014;9:130.
Ali AN, Ogunleye T, Hardy CW, et al. Improved hippocampal dose with reduced margin radiotherapy for glioblastoma multiforme. Radiat Oncol. 2014;9:20. doi:10.1186/1748-717X-9-20.
Gondi V, Tolakanahalli R, Mehta MP, et al. Hippocampal-sparing whole-brain radiotherapy: a “how-to” technique using helical tomotherapy and linear accelerator-based intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2010;78:1244–52. doi:10.1016/j.ijrobp.2010.01.039.
Gutiérrez AN, Westerly DC, Tomé WA, et al. Whole brain radiotherapy with hippocampal avoidance and simultaneously integrated brain metastases boost: a planning study. Int J Radiat Oncol Biol Phys. 2007;69:589–97. doi:10.1016/j.ijrobp.2007.05.038.
Hsu F, Carolan H, Nichol A, et al. Whole brain radiotherapy with hippocampal avoidance and simultaneous integrated boost for 1–3 brain metastases: a feasibility study using volumetric modulated Arc therapy. Int J Radiat Oncol Biol Phys. 2010;76:1480–5. doi:10.1016/j.ijrobp.2009.03.032.
Prokic V, Wiedenmann N, Fels F, et al. Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases: a planning study on treatment concepts. Int J Radiat Oncol Biol Phys. 2013;85:264–70. doi:10.1016/j.ijrobp.2012.02.036.
Oehlke O, Wucherpfennig D, Fels F, et al. Whole brain irradiation with hippocampal sparing and dose escalation on multiple brain metastases. Strahlentherapie und Onkol. 2015;191:461–9. doi:10.1007/s00066-014-0808-9.
Awad R, Fogarty G, Hong A, et al. Hippocampal avoidance with volumetric modulated arc therapy in melanoma brain metastases – the first Australian experience. Radiat Oncol. 2013;8:62. doi:10.1186/1748-717X-8-62.
Mahadevan A, Sampson C, Larosa S, et al. Dosimetric analysis of the alopecia preventing effect of hippocampus sparing whole brain radiation therapy. Radiat Oncol. 2015. doi:10.1186/s13014-015-0555-9.
Siglin J, Champ CE, Vakhnenko Y, et al. Optimizing patient positioning for intensity modulated radiation therapy in hippocampal-sparing whole brain radiation therapy. Pract Radiat Oncol. 2014;4:378–83. doi:10.1016/j.prro.2013.11.008.
Gondi V, Tome WA, Marsh J, et al. Estimated risk of perihippocampal disease progression after hippocampal avoidance during whole-brain radiotherapy: Safety profile for RTOG 0933. Radiother Oncol. 2010;95:327–31. doi:10.1016/j.radonc.2010.02.030.
Hong AM, Suo C, Valenzuela M, et al. Low incidence of melanoma brain metastasis in the hippocampus. Radiother Oncol. 2014;111:59–62. doi:10.1016/j.radonc.2014.01.012.
Chen L, Guerrero-Cazares H, Ye X, et al. Increased subventricular zone radiation dose correlates with survival in glioblastoma patients after gross total resection. Int J Radiat Oncol Biol Phys. 2013;86:616–22. doi:10.1016/j.ijrobp.2013.02.014.
Lee P, Eppinga W, Lagerwaard F, et al. Evaluation of high ipsilateral subventricular zone radiation therapy dose in glioblastoma: a pooled analysis. Int J Radiat Oncol Biol Phys. 2013;86:609–15. doi:10.1016/j.ijrobp.2013.01.009.
Adeberg S, Bostel T, König L, et al. A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival? Radiat Oncol. 2014;9:95. doi:10.1186/1748-717X-9-95.
Sharma A, Munshi A, Mohanti BK. In Regard to Lee et al. Int J Radiat Oncol. 2013;87:631. doi:10.1016/j.ijrobp.2013.07.026.
Gibbs IC, Haas-Kogan D, Terezakis S, Kavanagh BD. The subventricular zone neural progenitor cell hypothesis in glioblastoma: epiphany, Trojan horse, or Cheshire fact? Int J Radiat Oncol. 2013;86:606–8. doi:10.1016/j.ijrobp.2013.03.002.
Bodensohn R, Söhn M, Ganswindt U, et al. Hippocampal EUD in primarily irradiated glioblastoma patients. Radiat Oncol. 2014;9:276. doi:10.1186/s13014-014-0276-5.