Hinges, swivels and switches: the role of prolines in signalling via transmembrane α-helices

Trends in Pharmacological Sciences - Tập 21 Số 11 - Trang 445-451 - 2000
Mark S.P. Sansom1, Harel Weinstein2
1Professor of Molecular Biophysics,Laboratory of Molecular Biophysics, Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK OX1 3QU
2Dr Harold and Golden Lamport Professor of Physiology and Biophysics,Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York, NY 10029, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Doyle, 1998, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science, 280, 69, 10.1126/science.280.5360.69

Chang, 1998, Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel, Science, 282, 2220, 10.1126/science.282.5397.2220

Palczewski, 2000, Crystal structure of rhodopsin: a G protein-coupled receptor, Science, 289, 739, 10.1126/science.289.5480.739

Baldwin, 1993, The probable arrangement of the helices in G protein-coupled receptors, EMBO J., 12, 1693, 10.1002/j.1460-2075.1993.tb05814.x

van Rhee, 1996, Molecular architecture of G protein coupled receptors, Drug Dev. Res., 37, 1, 10.1002/(SICI)1098-2299(199601)37:1<1::AID-DDR1>3.0.CO;2-S

Sansom, 1993, Structure and function of channel-forming peptaibols, Q. Rev. Biophys., 26, 365, 10.1017/S0033583500002833

Dempsey, 1990, The actions of melittin on membranes, Biochim. Biophys. Acta, 1031, 143, 10.1016/0304-4157(90)90006-X

Sansom, 1991, The biophysics of peptide models of ion channels, Prog. Biophys. Mol. Biol., 55, 139, 10.1016/0079-6107(91)90004-C

Franklin, 1994, Structure of micelle-associated alamethicin from +H-NMR – evidence for conformational heterogeneity in a voltage-gated peptide, Biochemistry, 33, 4036, 10.1021/bi00179a032

Balashova, 1999, NMR structure of the channel-former zervamicin IIB in isotropic solvents, FEBS Lett., 466, 333, 10.1016/S0014-5793(99)01707-X

Dempsey, 1996, Hydrogen-bond stabilities in membrane-reconstituted alamethicin from amide-resolved hydrogen-exchange measurements, Biophys. J., 70, 1777, 10.1016/S0006-3495(96)79741-2

Dempsey, 1992, Helical structure and orientation of melittin in dispersed phospholipid membranes from amide exchange analysis in situ, Biochemistry, 31, 11973, 10.1021/bi00163a003

Dempsey, 1992, Quantitation of the effects of an internal proline residue on individual hydrogen bond stabilities in an α-helix: pH-dependent amide exchange in melittin and [ala-14]melittin, Biophys. J., 31, 4705

Gibbs, 1997, Helix bending in alamethicin: molecular dynamics simulations and amide hydrogen exchange in methanol, Biophys. J., 72, 2490, 10.1016/S0006-3495(97)78893-3

Sessions, 1998, Hydogen bonding in helical polypeptides from molecular dynamics simulations and amide exchange analysis: alamethicin and melittin in methanol, Biophys. J., 74, 138, 10.1016/S0006-3495(98)77775-6

Ballesteros, 1992, The role of Pro/Hyp-kinks in determining the transmembrane helix length and gating mechanism of a Leu-zervamicin channel, Biophys. J., 62, 110, 10.1016/S0006-3495(92)81795-2

Tieleman, 1999, Alamethicin helices in a bilayer and in solution: molecular dynamics simulations, Biophys. J., 76, 40, 10.1016/S0006-3495(99)77176-6

Brandl, 1986, Hypothesis about the function of membrane-buried proline residues in transport proteins, Proc. Natl. Acad. Sci. U. S. A., 83, 917, 10.1073/pnas.83.4.917

Barlow, 1988, Helix geometry in proteins, J. Mol. Biol., 201, 601, 10.1016/0022-2836(88)90641-9

von Heijne, 1991, Proline kinks in transmembrane α-helices, J. Mol. Biol., 218, 499, 10.1016/0022-2836(91)90695-3

Tieleman, 1999, An alamethicin channel in a lipid bilayer: molecular dynamics simulations, Biophys. J., 76, 1757, 10.1016/S0006-3495(99)77337-6

Yun, 1992, Proline in α-helix: stability and conformation studied by dynamics simulation, Protein Struct. Func. Genet., 10, 219, 10.1002/prot.340100306

Polinsky, 1992, Minimum energy conformations of proline-containing helices, Biopolymers., 32, 399, 10.1002/bip.360320416

Sankararamakrishnan, 1992, Geometry of proline-containing α-helices in proteins, Int. J. Pept. Protein Res., 39, 356, 10.1111/j.1399-3011.1992.tb01595.x

Suchyna, 1993, Identification of a proline residue as a transduction element in voltage-gating of gap junctions, Nature, 365, 847, 10.1038/365847a0

Unger, 1999, Three-dimensional structure of a recombinant gap junction membrane channel, Science, 283, 1176, 10.1126/science.283.5405.1176

Ri, 1999, The role of a conserved proline residue in mediating conformational changes associated with voltage gating of Cx32 gap junctions, Biophys. J., 76, 2887, 10.1016/S0006-3495(99)77444-8

Luecke, 1999, Structure of bacteriorhodopsin at 1.55 angstrom resolution, J. Mol. Biol., 291, 899, 10.1006/jmbi.1999.3027

Shrivastava, 2000, Structure and dynamics of K+ channel pore-lining helices: a comparative simulation study, Biophys. J., 78, 79, 10.1016/S0006-3495(00)76574-X

Kerr, 1996, Molecular dynamics simulations of isolated transmembrane helices of potassium channels, Biopolymers, 39, 503, 10.1002/(SICI)1097-0282(199610)39:4<503::AID-BIP3>3.3.CO;2-5

Camino, 2000, Blocker protection in the pore of a voltage-gated K+ channel and its structural implications, Nature, 403, 321, 10.1038/35002099

Cha, 1999, Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy, Nature, 402, 809, 10.1038/45552

Glauner, 1999, Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel, Nature, 402, 813, 10.1038/45561

Perozo, 1999, Structural rearrangements underlying K+-channel activation gating, Science, 285, 73, 10.1126/science.285.5424.73

Hackos, 2000, Mutations of a conserved proline in the inner helix of the pore domain of the Shaker K+ channel with altered gating properties, Biophys. J., 78, 398A

Ballesteros, 1995, Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors, Methods Neurosci., 25, 366, 10.1016/S1043-9471(05)80049-7

Pogozheva, 1997, The transmembrane 7-α-bundle of rhodopsin: Distance geometry calculation with hydrogen bonding constraints, Biophys J., 70, 1963, 10.1016/S0006-3495(97)78842-8

Osman, 1999, Mapping binding sites for peptide G protein-coupled receptors: the receptor for TRH, 59

Kristiansen, 1996, A database of mutants and effects of site-directed mutagenesis experiments on GPCRs, Protein Struct. Func. Genet., 26, 81, 10.1002/(SICI)1097-0134(199609)26:1<81::AID-PROT8>3.0.CO;2-J

Sankararamakrishnan, 1993, Characterisation of proline-containing α-helix (helix F model of bacteriorhodopsin) by molecular dynamics studies, Protein Struc. Func. Genet., 15, 26, 10.1002/prot.340150105

Piela, 1987, Pro-induced constraints in α-helices, Biopolymers, 26, 1587, 10.1002/bip.360260910

Zhang, 1993, Signal transduction by a 5-HT2 receptor: a mechanistic hypothesis from molecular dynamics simulations of the three-dimensional model of the receptor complexed to ligands, J. Med. Chem., 36, 934, 10.1021/jm00059a021

Zhang, 1993, Ligand selectivity and the molecular properties of the 5-HT2 receptor: computational simulations reveal a major role for transmembrane helix 7, Med. Chem. Res., 3, 357

Luo, 1994, Ligand-induced domain motion in the activation mechanism of a G-protein-coupled receptor, Protein Eng., 7, 1441, 10.1093/protein/7.12.1441

Farrens, 1996, Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin, Science, 274, 768, 10.1126/science.274.5288.768

Gether, 1997, Agonists induce conformational changes in transmembrane domains III and VI of the β2 adrenergic receptor, EMBO J., 16, 6737, 10.1093/emboj/16.22.6737

Sealfon, 1995, Related contribution of specific helix 2 and 7 residues to conformational activation of the serotonin 5-HT2A receptor, J. Biol. Chem., 270, 16683, 10.1074/jbc.270.28.16683

Visiers, I. et al. Prokink: a protocol for numerical evaluation of helix distortions by proline. Protein Eng. (in press)

Konvicka, 1998, A proposed structure for transmembrane segment 7 of G protein-coupled receptors incorporating an Asn-Pro/Asp-Pro motif, Biophys. J., 75, 601, 10.1016/S0006-3495(98)77551-4

Berlose, 1994, 3-Dimensional structure of the highly conserved 7th transmembrane domain of G-protein-coupled receptors, Eur. J. Biochem., 225, 827, 10.1111/j.1432-1033.1994.0827b.x

Duong, 1999, Molecular dynamics simulation of membranes and a transmembrane helix, J. Comp. Physiol., 151, 358, 10.1006/jcph.1999.6222

Scheer, 1996, Constitutively active mutants of the α1B adrenergic receptor: role of highly conserved polar amino acids in receptor activation, EMBO J., 15, 3566, 10.1002/j.1460-2075.1996.tb00726.x

Ballesteros, 1998, Functional microdomains in G protein-coupled receptors: the conserved arginine cage motif in the gonadotropin-releasing hormone receptor, J. Biol. Chem., 273, 10445, 10.1074/jbc.273.17.10445

Fanelli, 2000, Theoretical study on mutation-induced activation of the luteinizing hormone receptor, J. Mol. Biol., 296, 1333, 10.1006/jmbi.2000.3516

Wess, 1993, Functional role of proline and tryptophan residues highly conserved among G-protein-coupled receptors studied by mutational analysis of the M3 muscarinic receptor, EMBO J., 12, 331, 10.1002/j.1460-2075.1993.tb05661.x

Fu, 1996, Residues in the seventh membrane-spanning segment of the dopamine D2 receptor accessible in the binding-site crevice, Biochemistry, 35, 11278, 10.1021/bi960928x

Unwin, 1995, Acetylcholine receptor channel imaged in the open state, Nature, 373, 37, 10.1038/373037a0

Hucho, 1996, The emerging three-dimensional structure of a receptor: the nicotinic acetylcholine receptor, Eur. J. Biochem., 239, 539, 10.1111/j.1432-1033.1996.0539u.x

Corringer, 2000, Nicotinic receptors at the amino acid level, Annu. Rev. Pharmacol. Toxicol., 40, 431, 10.1146/annurev.pharmtox.40.1.431

Sankararamakrishnan, 1996, The pore domain of the nicotinic acetylcholine receptor: molecular modelling and electrostatics, Biophys. J., 71, 1659, 10.1016/S0006-3495(96)79370-0

Revah, 1991, Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor, Nature, 353, 846, 10.1038/353846a0

Opella, 1999, Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy, Nat. Struct. Biol., 6, 374, 10.1038/7610

Law, 2000, Structure and dynamics of the pore-lining helix of the nicotinic receptor: MD simulations in water, lipid bilayers and transbilayer bundles, Protein Struct. Func. Genet., 39, 47, 10.1002/(SICI)1097-0134(20000401)39:1<47::AID-PROT5>3.0.CO;2-A

Wilson, 2000, The intrinsic electrostatic potential and the intermediate ring of charge in the acetylcholine receptor channel, J. Gen. Physiol., 115, 93, 10.1085/jgp.115.2.93

Subramaniam, 2000, Molecular mechanism of vectorial proton translocation by bacteriorhodopsin, Nature, 406, 653, 10.1038/35020614

Jones, 1998, Do transmembrane protein superfolds exist?, FEBS Lett., 423, 281, 10.1016/S0014-5793(98)00095-7