Hinges, swivels and switches: the role of prolines in signalling via transmembrane α-helices
Tóm tắt
Từ khóa
Tài liệu tham khảo
Doyle, 1998, The structure of the potassium channel: molecular basis of K+ conduction and selectivity, Science, 280, 69, 10.1126/science.280.5360.69
Chang, 1998, Structure of the MscL homolog from Mycobacterium tuberculosis: a gated mechanosensitive ion channel, Science, 282, 2220, 10.1126/science.282.5397.2220
Palczewski, 2000, Crystal structure of rhodopsin: a G protein-coupled receptor, Science, 289, 739, 10.1126/science.289.5480.739
Baldwin, 1993, The probable arrangement of the helices in G protein-coupled receptors, EMBO J., 12, 1693, 10.1002/j.1460-2075.1993.tb05814.x
van Rhee, 1996, Molecular architecture of G protein coupled receptors, Drug Dev. Res., 37, 1, 10.1002/(SICI)1098-2299(199601)37:1<1::AID-DDR1>3.0.CO;2-S
Sansom, 1993, Structure and function of channel-forming peptaibols, Q. Rev. Biophys., 26, 365, 10.1017/S0033583500002833
Dempsey, 1990, The actions of melittin on membranes, Biochim. Biophys. Acta, 1031, 143, 10.1016/0304-4157(90)90006-X
Sansom, 1991, The biophysics of peptide models of ion channels, Prog. Biophys. Mol. Biol., 55, 139, 10.1016/0079-6107(91)90004-C
Franklin, 1994, Structure of micelle-associated alamethicin from +H-NMR – evidence for conformational heterogeneity in a voltage-gated peptide, Biochemistry, 33, 4036, 10.1021/bi00179a032
Balashova, 1999, NMR structure of the channel-former zervamicin IIB in isotropic solvents, FEBS Lett., 466, 333, 10.1016/S0014-5793(99)01707-X
Dempsey, 1996, Hydrogen-bond stabilities in membrane-reconstituted alamethicin from amide-resolved hydrogen-exchange measurements, Biophys. J., 70, 1777, 10.1016/S0006-3495(96)79741-2
Dempsey, 1992, Helical structure and orientation of melittin in dispersed phospholipid membranes from amide exchange analysis in situ, Biochemistry, 31, 11973, 10.1021/bi00163a003
Dempsey, 1992, Quantitation of the effects of an internal proline residue on individual hydrogen bond stabilities in an α-helix: pH-dependent amide exchange in melittin and [ala-14]melittin, Biophys. J., 31, 4705
Gibbs, 1997, Helix bending in alamethicin: molecular dynamics simulations and amide hydrogen exchange in methanol, Biophys. J., 72, 2490, 10.1016/S0006-3495(97)78893-3
Sessions, 1998, Hydogen bonding in helical polypeptides from molecular dynamics simulations and amide exchange analysis: alamethicin and melittin in methanol, Biophys. J., 74, 138, 10.1016/S0006-3495(98)77775-6
Ballesteros, 1992, The role of Pro/Hyp-kinks in determining the transmembrane helix length and gating mechanism of a Leu-zervamicin channel, Biophys. J., 62, 110, 10.1016/S0006-3495(92)81795-2
Tieleman, 1999, Alamethicin helices in a bilayer and in solution: molecular dynamics simulations, Biophys. J., 76, 40, 10.1016/S0006-3495(99)77176-6
Brandl, 1986, Hypothesis about the function of membrane-buried proline residues in transport proteins, Proc. Natl. Acad. Sci. U. S. A., 83, 917, 10.1073/pnas.83.4.917
von Heijne, 1991, Proline kinks in transmembrane α-helices, J. Mol. Biol., 218, 499, 10.1016/0022-2836(91)90695-3
Tieleman, 1999, An alamethicin channel in a lipid bilayer: molecular dynamics simulations, Biophys. J., 76, 1757, 10.1016/S0006-3495(99)77337-6
Yun, 1992, Proline in α-helix: stability and conformation studied by dynamics simulation, Protein Struct. Func. Genet., 10, 219, 10.1002/prot.340100306
Polinsky, 1992, Minimum energy conformations of proline-containing helices, Biopolymers., 32, 399, 10.1002/bip.360320416
Sankararamakrishnan, 1992, Geometry of proline-containing α-helices in proteins, Int. J. Pept. Protein Res., 39, 356, 10.1111/j.1399-3011.1992.tb01595.x
Suchyna, 1993, Identification of a proline residue as a transduction element in voltage-gating of gap junctions, Nature, 365, 847, 10.1038/365847a0
Unger, 1999, Three-dimensional structure of a recombinant gap junction membrane channel, Science, 283, 1176, 10.1126/science.283.5405.1176
Ri, 1999, The role of a conserved proline residue in mediating conformational changes associated with voltage gating of Cx32 gap junctions, Biophys. J., 76, 2887, 10.1016/S0006-3495(99)77444-8
Luecke, 1999, Structure of bacteriorhodopsin at 1.55 angstrom resolution, J. Mol. Biol., 291, 899, 10.1006/jmbi.1999.3027
Shrivastava, 2000, Structure and dynamics of K+ channel pore-lining helices: a comparative simulation study, Biophys. J., 78, 79, 10.1016/S0006-3495(00)76574-X
Kerr, 1996, Molecular dynamics simulations of isolated transmembrane helices of potassium channels, Biopolymers, 39, 503, 10.1002/(SICI)1097-0282(199610)39:4<503::AID-BIP3>3.3.CO;2-5
Camino, 2000, Blocker protection in the pore of a voltage-gated K+ channel and its structural implications, Nature, 403, 321, 10.1038/35002099
Cha, 1999, Atomic scale movement of the voltage-sensing region in a potassium channel measured via spectroscopy, Nature, 402, 809, 10.1038/45552
Glauner, 1999, Spectroscopic mapping of voltage sensor movement in the Shaker potassium channel, Nature, 402, 813, 10.1038/45561
Perozo, 1999, Structural rearrangements underlying K+-channel activation gating, Science, 285, 73, 10.1126/science.285.5424.73
Hackos, 2000, Mutations of a conserved proline in the inner helix of the pore domain of the Shaker K+ channel with altered gating properties, Biophys. J., 78, 398A
Ballesteros, 1995, Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors, Methods Neurosci., 25, 366, 10.1016/S1043-9471(05)80049-7
Pogozheva, 1997, The transmembrane 7-α-bundle of rhodopsin: Distance geometry calculation with hydrogen bonding constraints, Biophys J., 70, 1963, 10.1016/S0006-3495(97)78842-8
Osman, 1999, Mapping binding sites for peptide G protein-coupled receptors: the receptor for TRH, 59
Kristiansen, 1996, A database of mutants and effects of site-directed mutagenesis experiments on GPCRs, Protein Struct. Func. Genet., 26, 81, 10.1002/(SICI)1097-0134(199609)26:1<81::AID-PROT8>3.0.CO;2-J
Sankararamakrishnan, 1993, Characterisation of proline-containing α-helix (helix F model of bacteriorhodopsin) by molecular dynamics studies, Protein Struc. Func. Genet., 15, 26, 10.1002/prot.340150105
Zhang, 1993, Signal transduction by a 5-HT2 receptor: a mechanistic hypothesis from molecular dynamics simulations of the three-dimensional model of the receptor complexed to ligands, J. Med. Chem., 36, 934, 10.1021/jm00059a021
Zhang, 1993, Ligand selectivity and the molecular properties of the 5-HT2 receptor: computational simulations reveal a major role for transmembrane helix 7, Med. Chem. Res., 3, 357
Luo, 1994, Ligand-induced domain motion in the activation mechanism of a G-protein-coupled receptor, Protein Eng., 7, 1441, 10.1093/protein/7.12.1441
Farrens, 1996, Requirement of rigid-body motion of transmembrane helices for light activation of rhodopsin, Science, 274, 768, 10.1126/science.274.5288.768
Gether, 1997, Agonists induce conformational changes in transmembrane domains III and VI of the β2 adrenergic receptor, EMBO J., 16, 6737, 10.1093/emboj/16.22.6737
Sealfon, 1995, Related contribution of specific helix 2 and 7 residues to conformational activation of the serotonin 5-HT2A receptor, J. Biol. Chem., 270, 16683, 10.1074/jbc.270.28.16683
Visiers, I. et al. Prokink: a protocol for numerical evaluation of helix distortions by proline. Protein Eng. (in press)
Konvicka, 1998, A proposed structure for transmembrane segment 7 of G protein-coupled receptors incorporating an Asn-Pro/Asp-Pro motif, Biophys. J., 75, 601, 10.1016/S0006-3495(98)77551-4
Berlose, 1994, 3-Dimensional structure of the highly conserved 7th transmembrane domain of G-protein-coupled receptors, Eur. J. Biochem., 225, 827, 10.1111/j.1432-1033.1994.0827b.x
Duong, 1999, Molecular dynamics simulation of membranes and a transmembrane helix, J. Comp. Physiol., 151, 358, 10.1006/jcph.1999.6222
Scheer, 1996, Constitutively active mutants of the α1B adrenergic receptor: role of highly conserved polar amino acids in receptor activation, EMBO J., 15, 3566, 10.1002/j.1460-2075.1996.tb00726.x
Ballesteros, 1998, Functional microdomains in G protein-coupled receptors: the conserved arginine cage motif in the gonadotropin-releasing hormone receptor, J. Biol. Chem., 273, 10445, 10.1074/jbc.273.17.10445
Fanelli, 2000, Theoretical study on mutation-induced activation of the luteinizing hormone receptor, J. Mol. Biol., 296, 1333, 10.1006/jmbi.2000.3516
Wess, 1993, Functional role of proline and tryptophan residues highly conserved among G-protein-coupled receptors studied by mutational analysis of the M3 muscarinic receptor, EMBO J., 12, 331, 10.1002/j.1460-2075.1993.tb05661.x
Fu, 1996, Residues in the seventh membrane-spanning segment of the dopamine D2 receptor accessible in the binding-site crevice, Biochemistry, 35, 11278, 10.1021/bi960928x
Unwin, 1995, Acetylcholine receptor channel imaged in the open state, Nature, 373, 37, 10.1038/373037a0
Hucho, 1996, The emerging three-dimensional structure of a receptor: the nicotinic acetylcholine receptor, Eur. J. Biochem., 239, 539, 10.1111/j.1432-1033.1996.0539u.x
Corringer, 2000, Nicotinic receptors at the amino acid level, Annu. Rev. Pharmacol. Toxicol., 40, 431, 10.1146/annurev.pharmtox.40.1.431
Sankararamakrishnan, 1996, The pore domain of the nicotinic acetylcholine receptor: molecular modelling and electrostatics, Biophys. J., 71, 1659, 10.1016/S0006-3495(96)79370-0
Revah, 1991, Mutations in the channel domain alter desensitization of a neuronal nicotinic receptor, Nature, 353, 846, 10.1038/353846a0
Opella, 1999, Structures of the M2 channel-lining segments from nicotinic acetylcholine and NMDA receptors by NMR spectroscopy, Nat. Struct. Biol., 6, 374, 10.1038/7610
Law, 2000, Structure and dynamics of the pore-lining helix of the nicotinic receptor: MD simulations in water, lipid bilayers and transbilayer bundles, Protein Struct. Func. Genet., 39, 47, 10.1002/(SICI)1097-0134(20000401)39:1<47::AID-PROT5>3.0.CO;2-A
Wilson, 2000, The intrinsic electrostatic potential and the intermediate ring of charge in the acetylcholine receptor channel, J. Gen. Physiol., 115, 93, 10.1085/jgp.115.2.93
Subramaniam, 2000, Molecular mechanism of vectorial proton translocation by bacteriorhodopsin, Nature, 406, 653, 10.1038/35020614