Hilbert's epsilon as an operator of indefinite committed choice

Journal of Applied Logic - Tập 6 - Trang 287-317 - 2008
Claus-Peter Wirth1
1Department of Computer Sci., Universität des Saarlandes, D-66123 Saarbrücken, Germany

Tài liệu tham khảo

Ackermann, 1938, Mengentheoretische Begründung der Logik, Mathematische Annalen, 115, 1, 10.1007/BF01448924 Anellis, 2004, Book Review of Brady (2000), Transactions of the Charles S. Peirce Society, XL, 350 Asser, 1957, Theorie der logischen Auswahlfunktionen, Zeitschrift für math. Logik und Grundlagen der Math., 3, 30, 10.1002/malq.19570030104 1990, vol. 13 Bell, 1993, Hilbert's ε-Operator and Classical Logic, J. Philosophical Logic, 22, 1, 10.1007/BF01049178 Bibel, 1987 1998 Blass, 2000, The Logic of Choice, J. Symbolic Logic, 65, 1264, 10.2307/2586700 Bourbaki, 1954 Brady, 2000 2000, vol. 1761 van Deemter, Kees, Peters, Stanley (Eds.), 1996. Semantic Ambiguity and Underspecification. CLSI LN No. 55, Stanford DeVidi, 1995, Intuitionistic ε- and τ-Calculi, Math. Logic Quart., 41, 523, 10.1002/malq.19950410409 Fitting, 1996 Frege, 1893 Gentzen, 1935, Untersuchungen über das logische Schließen, Mathematische Zeitschrift, 39, 176, 10.1007/BF01201353 Gentzen, 1969 Geurts, 2000, Indefiniteness and Choice Functions, Linguistic Inquiry, 31, 731, 10.1162/002438900554550 Giese, 1999, Hilbert's ε-Terms in Automated Theorem Proving, vol. 1617, 171 1971 Herbrand, Jacques, 1930. Recherches sur la théorie de la démonstration. Thèses présentées à la faculté des Sciences de Paris pour obtenir le grade de docteur ès sciences mathématiques, 1re thése. Univ. de Paris. Also in: Herbrand (1968), pp. 35–153. English translation Investigations in Proof Theory in: Herbrand (1971), pp. 44–202. English translation of §5 also in: Heijenoort (1971), pp. 525–581 Herbrand, 1968 Herbrand, 1971 Hermes, 1965, Eine Termlogik mit Auswahloperator, vol. 6 von Heusinger, Klaus, 1996. The Reference of Indefinites. In: Heusinger & Egli (1996), pp. 73–92. http://www.ub.uni-konstanz.de/kops/volltexte/2000/508/pdf/ap079_4.pdf, Feb. 04, 2005 von Heusinger, 1997, Salienz und Referenz – Der Epsilonoperator in der Semantik der Nominalphrase und anaphorischer Pronomen, vol. 43 1996 Hilbert, 1923, Die logischen Grundlagen der Mathematik, Mathematische Annalen, 88, 151, 10.1007/BF01448445 Hilbert, 1928, Die Grundlagen der Mathematik – Vortrag, gehalten auf Einladung des Mathematischen Seminars im Juli 1927 in Hamburg, Abhandlungen aus dem mathematischen Seminar der Univ. Hamburg, 6, 65, 10.1007/BF02940602 Hilbert, 1968 Hobbs, Jerry R., 1996. Monotone Decreasing Quantifiers in a Scope-Free Logical Form. In: Deemter & Peters (1996), pp. 55–76. http://www.isi.edu/~hobbs/monotone-decreasing.pdf, Feb. 21, 2005 Hobbs Kennedy, 1973 Kohlhase, Michaël, 1998. Higher-Order Automated Theorem Proving. In: Bibel & Schmitt (1998), Vol. 1, pp. 431–462 Kowalski, 1979 Leisenring, 1969 Löwenheim, 1915, Über Möglichkeiten im Relativkalkül, Mathematische Annalen, 76, 228, 10.1007/BF01458217 Meyer-Viol, Wilfried P.M., 1995. Instantial Logic—An Investigation into Reasoning with Instances. Ph.D. thesis, ILLC dissertation series 1995-11, Univ. Utrecht Miller, 1992, Unification under a Mixed Prefix, J. Symbolic Computation, 14, 321, 10.1016/0747-7171(92)90011-R Parsons, 1994, Anaphoric Pronouns in Very Late Medieval Supposition Theory, Linguistics and Philosophy, 17, 429, 10.1007/BF00985830 1884 Peano, 1896, Studii di Logica Matematica, Atti della Reale Accademia delle Scienze di Torino – Classe di Scienze Morali, Storiche e Filologiche e Classe di Scienze Fisiche, Matematiche e Naturali, 32, 565 Peano, Guiseppe, 1899a. Über mathematische Logik. German translation of Peano (1896f.). In: Peano (1899b), Appendix 1. Facsimile also in: Asser (1990), pp. 10–26 1899 Prawitz, Dad, 1960. An Improved Proof Procedure. In: Siekmann & Wrightson (1983), Vol. 1, pp. 159–199 Van O. Quine, 1981 Russell, 1905, On Denoting, Mind, 14, 479, 10.1093/mind/XIV.4.479 Russell, 1919 1983 Skolem, 1928, Über die mathematische Logik, Nordisk Matematisk Tidskrift, 10, 125 Smullyan, 1968 Wallen, 1990 Whitehead, 1925 Wirth, Claus-Peter, 1998. Full First-Order Sequent and Tableau Calculi With Preservation of Solutions and the Liberalized δ-Rule but Without Skolemization, Report 698/1998, FB Informatik, Univ. Dortmund. Short version in: Gernot Salzer, Ricardo Caferra (Eds.). Proc. 2nd Int. Workshop on First-Order Theorem Proving (FTP'98), Tech. Univ. Wien, 1998, pp. 244–255. Short version also in: Caferra & Salzer (2000), pp. 283–298. http://www.ags.uni-sb.de/~cp/p/ftp98, Aug. 05, 2001 Wirth, 2002, A New Indefinite Semantics for Hilbert's Epsilon, vol. 2381, 298 Wirth, 2004, Descente Infinie + Deduction, Logic J. of the IGPL, 12, 1, 10.1093/jigpal/12.1.1 Wirth Wirth Wittgenstein, 1989