Hilbert genus fields of real biquadratic fields
Tóm tắt
The Hilbert genus field of the real biquadratic field
$$K=\mathbb {Q}(\sqrt{\delta },\sqrt{d})$$
is described by Yue (Ramanujan J 21:17–25, 2010) and by Bae and Yue (Ramanujan J 24:161–181, 2011) explicitly in the case
$$\delta =2$$
or
$$p$$
with
$$p\equiv 1 \, \mathrm{mod}\, 4$$
a prime and
$$d$$
a squarefree positive integer. In this article, we describe explicitly the case that
$$\delta =p, 2p$$
or
$$p_1p_2$$
where
$$p$$
,
$$p_1$$
, and
$$p_2$$
are primes congruent to
$$3$$
modulo
$$4$$
, and
$$d$$
is any squarefree positive integer, thus complete the construction of the Hilbert genus field of real biquadratic field
$$K=K_0(\sqrt{d})$$
such that
$$K_0=\mathbb {Q}(\sqrt{\delta })$$
has an odd class number.
Tài liệu tham khảo
Bae, S., Yue, Q.: Hilbert genus fields of real biquadratic fields. Ramanujan J. 24, 161–181 (2011)
Conner, P.E., Hurrelbrink, J.: Class Number Parity, Ser. Pure Math., vol. 8. World Scientific, Singapore (1988)
Lang, S.: Cyclotomic Fields I and II. GTM 121. Springer-Verlag, New York (1990)
McCall, T.M., Parry, C.J., Ranalli, R.R.: On imaginary bicyclic biquadratic fields with cyclic 2-class group. J. Number Theory 53, 88–99 (1995)
Ouyang, Y., Zhang, Z.: Hilbert genus fields of biquadratic fields. Sci. China Math., to appear
Sime, P.: Hilbert class fields of real biquadratic fields. J. Number Theory 50, 154–166 (1995)
Yue, Q.: The generalized Rédei matrix. Math. Z. 261, 23–37 (2009)
Yue, Q.: Genus fields of real biquadratic fields. Ramanujan J. 21, 17–25 (2010)
Zhang, Z., Yue, Q.: Fundamental units of real quadratic fields of odd class number. J. Number Theory 137, 122–129 (2014)