Hilbert genus fields of real biquadratic fields

The Ramanujan Journal - Tập 37 - Trang 345-363 - 2014
Yi Ouyang1, Zhe Zhang1
1Wu Wen-Tsun Key Laboratory of Mathematics, School of Mathematical Sciences, University of Science and Technology of China, Hefei , People’s Republic of China

Tóm tắt

The Hilbert genus field of the real biquadratic field $$K=\mathbb {Q}(\sqrt{\delta },\sqrt{d})$$ is described by Yue (Ramanujan J 21:17–25, 2010) and by Bae and Yue (Ramanujan J 24:161–181, 2011) explicitly in the case $$\delta =2$$ or $$p$$ with $$p\equiv 1 \, \mathrm{mod}\, 4$$ a prime and $$d$$ a squarefree positive integer. In this article, we describe explicitly the case that $$\delta =p, 2p$$ or $$p_1p_2$$ where $$p$$ , $$p_1$$ , and $$p_2$$ are primes congruent to $$3$$ modulo $$4$$ , and $$d$$ is any squarefree positive integer, thus complete the construction of the Hilbert genus field of real biquadratic field $$K=K_0(\sqrt{d})$$ such that $$K_0=\mathbb {Q}(\sqrt{\delta })$$ has an odd class number.

Tài liệu tham khảo

Bae, S., Yue, Q.: Hilbert genus fields of real biquadratic fields. Ramanujan J. 24, 161–181 (2011) Conner, P.E., Hurrelbrink, J.: Class Number Parity, Ser. Pure Math., vol. 8. World Scientific, Singapore (1988) Lang, S.: Cyclotomic Fields I and II. GTM 121. Springer-Verlag, New York (1990) McCall, T.M., Parry, C.J., Ranalli, R.R.: On imaginary bicyclic biquadratic fields with cyclic 2-class group. J. Number Theory 53, 88–99 (1995) Ouyang, Y., Zhang, Z.: Hilbert genus fields of biquadratic fields. Sci. China Math., to appear Sime, P.: Hilbert class fields of real biquadratic fields. J. Number Theory 50, 154–166 (1995) Yue, Q.: The generalized Rédei matrix. Math. Z. 261, 23–37 (2009) Yue, Q.: Genus fields of real biquadratic fields. Ramanujan J. 21, 17–25 (2010) Zhang, Z., Yue, Q.: Fundamental units of real quadratic fields of odd class number. J. Number Theory 137, 122–129 (2014)