Highly transparent Tb3Al5O12 magneto-optical ceramics sintered from co-precipitated powders with sintering aids

Optical Materials - Tập 78 - Trang 370-374 - 2018
Jiawei Dai1,2, Yubai Pan3, Tengfei Xie1, Huamin Kou1, Jiang Li1
1Key Laboratory of Transparent Opto-functional Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
2University of Chinese Academy of Sciences, Beijing, 100049, China
3Department of Physics, Shanghai Normal University, Shanghai 200234, China

Tài liệu tham khảo

Mironov, 2014, Faraday isolator based on TSAG crystal for high power lasers, Optic Express, 22, 23226, 10.1364/OE.22.023226 Snetkov, 2015, Faraday isolator based on a TSAG single crystal with compensation of thermally induced depolarization inside magnetic field, Opt. Mater., 42, 293, 10.1016/j.optmat.2015.01.015 Geho, 2005, Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals, Jpn. J. Appl. Phys., 44, 4967, 10.1143/JJAP.44.4967 Snetkov, 2014, TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization, Optic Express, 22, 4144, 10.1364/OE.22.004144 Yasuhara, 2013, Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG, Optic Express, 21, 31443, 10.1364/OE.21.031443 Starobor, 2016, Thermo-optical properties of terbium-aluminum garnet ceramics doped with silicon and titanium, Opt. Lett., 41, 1510, 10.1364/OL.41.001510 Starobor, 2014, Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power, Opt. Mater. Express, 4, 2127, 10.1364/OME.4.002127 Rubinstein, 1964, Magneto-optical properties of rare earth (3) aluminum garnets, J. Appl. Phys., 35, 3069, 10.1063/1.1713182 Zheleznov, 2014, Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping, Opt. Lett., 39, 2183, 10.1364/OL.39.002183 Dai, 2017, Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders: the influence of ammonium hydrogen carbonate to metal ions molar ratio, Ceram. Int., 43, 14457, 10.1016/j.ceramint.2017.07.225 Ganschow, 1999, On the crystallization of terbium aluminium garnet, Cryst. Res. Technol., 34, 615, 10.1002/(SICI)1521-4079(199906)34:5/6<615::AID-CRAT615>3.0.CO;2-C Sato, 2004, Micro-pulling-down growth and characterization of Tb3−xTmxAl5O12 fiber crystals for Faraday rotator applications, J. Cryst. Growth, 264, 253, 10.1016/j.jcrysgro.2003.12.029 Chani, 2000, Melt growth of (Tb,Lu)(3)Al5O12 mixed garnet fiber crystals, J. Cryst. Growth, 212, 469, 10.1016/S0022-0248(00)00021-X Chani, 2000, (Tb,Yb)(3)Al5O12 garnet: crystal-chemistry and fiber growth by micro-pulling-down technique, Mater. Sci. Eng. B, 75, 53, 10.1016/S0921-5107(00)00382-2 Zhang, 2007, Growth and characterization of Tb3Ga5−xAlxO12 single crystal, J. Cryst. Growth, 306, 195, 10.1016/j.jcrysgro.2007.04.039 Víllora, 2011, Faraday rotator properties of {Tb3}[Sc1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators, Appl. Phys. Lett., 99, 10.1063/1.3609245 Ganschow, 2001, Growth conditions and composition of terbium aluminum garnet single crystals grown by the micro pulling down technique, J. Cryst. Growth, 225, 454, 10.1016/S0022-0248(01)00915-0 Geho, 2004, Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine, J. Cryst. Growth, 267, 188, 10.1016/j.jcrysgro.2004.03.068 Geho, 2005, Growth mechanism of incongruently melting terbium aluminum garnet (Tb3Al5O12;TAG) single crystals by laser FZ method, J. Cryst. Growth, 275, e663, 10.1016/j.jcrysgro.2004.11.048 Lin, 2011, Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications, Opt. Mater., 33, 1833, 10.1016/j.optmat.2011.06.017 Chen, 2015, Vacuum sintering of Tb3Al5O12 transparent ceramics with combined TEOS+MgO sintering Aids, Ceram. Int., 41, 12823, 10.1016/j.ceramint.2015.06.118 Chen, 2015, Optimization of CeO2 as sintering aid for Tb3Al5O12 Faraday magneto-optical transparent ceramics, J. Mater. Sci., 50, 2517, 10.1007/s10853-014-8810-2 Li, 2018, Research progress on magneto-optical transparent ceramics, J. Inorg. Mater., 33, 1, 10.15541/jim20170160 Dai, 2017, Synthesis of Tb4O7 nanopowders by the carbonate-precipitation method for Tb3Al5O12 magneto-optical ceramics, Opt. Mater., 73, 706, 10.1016/j.optmat.2017.09.036 Yan Lin, 2017, Development of optical grade (TbxY1-x)3Al5O12 ceramics as Faraday rotator material, J. Am. Ceram. Soc., 100, 4081, 10.1111/jace.14961 Dai, 2017, Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders, Opt. Mater., 73, 38, 10.1016/j.optmat.2017.07.047 Dai, 2017, Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders: the influence of ammonium hydrogen carbonate to metal ions molar ratio, Ceram. Int., 43, 14457, 10.1016/j.ceramint.2017.07.225 Chen, 2015, Systematic optimization of ball milling for highly transparent Yb:YAG ceramic using co-precipitated raw powders, J. Alloy. Comp., 653, 552, 10.1016/j.jallcom.2015.09.026 Liu, 2014, Effects of ball milling time on microstructure evolution and optical transparency of Nd:YAG ceramics, Ceram. Int., 40, 9841, 10.1016/j.ceramint.2014.02.076 Wang, 2015, Densification and microstructural evolution of yttria transparent ceramics: the effect of ball milling conditions, J. Eur. Ceram. Soc., 35, 1011, 10.1016/j.jeurceramsoc.2014.09.042 Zhu, 2017, Effects of ZrO2-La2O3 co-addition on the microstructural and optical properties of transparent Y2O3 ceramics, Ceram. Int., 43, 8525, 10.1016/j.ceramint.2017.03.208 Boulesteix, 2017, Silica reactivity during reaction-sintering of Nd:YAG transparent ceramics, J. Am. Ceram. Soc., 100, 945, 10.1111/jace.14680 German, 2009, Review: liquid phase sintering, J. Mater. Sci., 44, 1, 10.1007/s10853-008-3008-0 Krell, 2006, Effects of the homogeneity of particle coordination on solid-state sintering of transparent alumina, J. Am. Ceram. Soc., 89, 1985, 10.1111/j.1551-2916.2006.00985.x