Highly transparent Tb3Al5O12 magneto-optical ceramics sintered from co-precipitated powders with sintering aids
Tài liệu tham khảo
Mironov, 2014, Faraday isolator based on TSAG crystal for high power lasers, Optic Express, 22, 23226, 10.1364/OE.22.023226
Snetkov, 2015, Faraday isolator based on a TSAG single crystal with compensation of thermally induced depolarization inside magnetic field, Opt. Mater., 42, 293, 10.1016/j.optmat.2015.01.015
Geho, 2005, Development of optical isolators for visible light using terbium aluminum garnet (Tb3Al5O12) single crystals, Jpn. J. Appl. Phys., 44, 4967, 10.1143/JJAP.44.4967
Snetkov, 2014, TGG ceramics based Faraday isolator with external compensation of thermally induced depolarization, Optic Express, 22, 4144, 10.1364/OE.22.004144
Yasuhara, 2013, Temperature dependence of thermo-optic effects of single-crystal and ceramic TGG, Optic Express, 21, 31443, 10.1364/OE.21.031443
Starobor, 2016, Thermo-optical properties of terbium-aluminum garnet ceramics doped with silicon and titanium, Opt. Lett., 41, 1510, 10.1364/OL.41.001510
Starobor, 2014, Study of the properties and prospects of Ce:TAG and TGG magnetooptical ceramics for optical isolators for lasers with high average power, Opt. Mater. Express, 4, 2127, 10.1364/OME.4.002127
Rubinstein, 1964, Magneto-optical properties of rare earth (3) aluminum garnets, J. Appl. Phys., 35, 3069, 10.1063/1.1713182
Zheleznov, 2014, Improving characteristics of Faraday isolators based on TAG ceramics by cerium doping, Opt. Lett., 39, 2183, 10.1364/OL.39.002183
Dai, 2017, Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders: the influence of ammonium hydrogen carbonate to metal ions molar ratio, Ceram. Int., 43, 14457, 10.1016/j.ceramint.2017.07.225
Ganschow, 1999, On the crystallization of terbium aluminium garnet, Cryst. Res. Technol., 34, 615, 10.1002/(SICI)1521-4079(199906)34:5/6<615::AID-CRAT615>3.0.CO;2-C
Sato, 2004, Micro-pulling-down growth and characterization of Tb3−xTmxAl5O12 fiber crystals for Faraday rotator applications, J. Cryst. Growth, 264, 253, 10.1016/j.jcrysgro.2003.12.029
Chani, 2000, Melt growth of (Tb,Lu)(3)Al5O12 mixed garnet fiber crystals, J. Cryst. Growth, 212, 469, 10.1016/S0022-0248(00)00021-X
Chani, 2000, (Tb,Yb)(3)Al5O12 garnet: crystal-chemistry and fiber growth by micro-pulling-down technique, Mater. Sci. Eng. B, 75, 53, 10.1016/S0921-5107(00)00382-2
Zhang, 2007, Growth and characterization of Tb3Ga5−xAlxO12 single crystal, J. Cryst. Growth, 306, 195, 10.1016/j.jcrysgro.2007.04.039
Víllora, 2011, Faraday rotator properties of {Tb3}[Sc1.95Lu0.05](Al3)O12, a highly transparent terbium-garnet for visible-infrared optical isolators, Appl. Phys. Lett., 99, 10.1063/1.3609245
Ganschow, 2001, Growth conditions and composition of terbium aluminum garnet single crystals grown by the micro pulling down technique, J. Cryst. Growth, 225, 454, 10.1016/S0022-0248(01)00915-0
Geho, 2004, Growth of terbium aluminum garnet (Tb3Al5O12; TAG) single crystals by the hybrid laser floating zone machine, J. Cryst. Growth, 267, 188, 10.1016/j.jcrysgro.2004.03.068
Geho, 2005, Growth mechanism of incongruently melting terbium aluminum garnet (Tb3Al5O12;TAG) single crystals by laser FZ method, J. Cryst. Growth, 275, e663, 10.1016/j.jcrysgro.2004.11.048
Lin, 2011, Synthesis of Tb3Al5O12 (TAG) transparent ceramics for potential magneto-optical applications, Opt. Mater., 33, 1833, 10.1016/j.optmat.2011.06.017
Chen, 2015, Vacuum sintering of Tb3Al5O12 transparent ceramics with combined TEOS+MgO sintering Aids, Ceram. Int., 41, 12823, 10.1016/j.ceramint.2015.06.118
Chen, 2015, Optimization of CeO2 as sintering aid for Tb3Al5O12 Faraday magneto-optical transparent ceramics, J. Mater. Sci., 50, 2517, 10.1007/s10853-014-8810-2
Li, 2018, Research progress on magneto-optical transparent ceramics, J. Inorg. Mater., 33, 1, 10.15541/jim20170160
Dai, 2017, Synthesis of Tb4O7 nanopowders by the carbonate-precipitation method for Tb3Al5O12 magneto-optical ceramics, Opt. Mater., 73, 706, 10.1016/j.optmat.2017.09.036
Yan Lin, 2017, Development of optical grade (TbxY1-x)3Al5O12 ceramics as Faraday rotator material, J. Am. Ceram. Soc., 100, 4081, 10.1111/jace.14961
Dai, 2017, Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders, Opt. Mater., 73, 38, 10.1016/j.optmat.2017.07.047
Dai, 2017, Fabrication of Tb3Al5O12 transparent ceramics using co-precipitated nanopowders: the influence of ammonium hydrogen carbonate to metal ions molar ratio, Ceram. Int., 43, 14457, 10.1016/j.ceramint.2017.07.225
Chen, 2015, Systematic optimization of ball milling for highly transparent Yb:YAG ceramic using co-precipitated raw powders, J. Alloy. Comp., 653, 552, 10.1016/j.jallcom.2015.09.026
Liu, 2014, Effects of ball milling time on microstructure evolution and optical transparency of Nd:YAG ceramics, Ceram. Int., 40, 9841, 10.1016/j.ceramint.2014.02.076
Wang, 2015, Densification and microstructural evolution of yttria transparent ceramics: the effect of ball milling conditions, J. Eur. Ceram. Soc., 35, 1011, 10.1016/j.jeurceramsoc.2014.09.042
Zhu, 2017, Effects of ZrO2-La2O3 co-addition on the microstructural and optical properties of transparent Y2O3 ceramics, Ceram. Int., 43, 8525, 10.1016/j.ceramint.2017.03.208
Boulesteix, 2017, Silica reactivity during reaction-sintering of Nd:YAG transparent ceramics, J. Am. Ceram. Soc., 100, 945, 10.1111/jace.14680
German, 2009, Review: liquid phase sintering, J. Mater. Sci., 44, 1, 10.1007/s10853-008-3008-0
Krell, 2006, Effects of the homogeneity of particle coordination on solid-state sintering of transparent alumina, J. Am. Ceram. Soc., 89, 1985, 10.1111/j.1551-2916.2006.00985.x