Highly stretchable and tough hydrogels

Nature - Tập 489 Số 7414 - Trang 133-136 - 2012
Jeong‐Yun Sun1, Xuanhe Zhao2, Widusha R. K. Illeperuma1, Ovijit Chaudhuri1, Kyu Hwan Oh3, David Mooney1, Joost J. Vlassak1, Zhigang Suo4
1School of Engineering and Applied Sciences, Harvard University, Cambridge, 02138, Massachusetts, USA
2Department of Mechanical Engineering and Materials Science, Duke University, Durham, 27708, North Carolina, USA
3Department of Material Science and Engineering, Seoul National University, Seoul 151-742, South Korea
4Kavli Institute for Bionano Science and Technology, Harvard University, Cambridge, 02138, Massachusetts, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lee, K. Y. & Mooney, D. J. Hydrogels for tissue engineering. Chem. Rev. 101, 1869–1879 (2001)

Qiu, Y. & Park, K. Environment-sensitive hydrogels for drug delivery. Adv. Drug Deliv. Rev. 53, 321–339 (2001)

Dong, L., Agarwal, A. K., Beebe, D. J. & Jiang, H. R. Adaptive liquid microlenses activated by stimuli-responsive hydrogels. Nature 442, 551–554 (2006)

Discher, D. E., Mooney, D. J. & Zandstra, P. W. Growth factors, matrices, and forces combine and control stem cells. Science 324, 1673–1677 (2009)

Calvert, P. Hydrogels for soft machines. Adv. Mater. 21, 743–756 (2009)

Okumura, Y. & Ito, K. The polyrotaxane gel: a topological gel by figure-of-eight cross-links. Adv. Mater. 13, 485–487 (2001)

Haraguchi, K. & Takehisa, T. Nanocomposite hydrogels: a unique organic-inorganic network structure with extraordinary mechanical, optical and swelling/de-swelling properties. Adv. Mater. 14, 1120–1124 (2002)

Lake, G. J. & Thomas, A. G. The strength of highly elastic materials. Proc. R. Soc. A 300, 108–119 (1967)

Simha, N. K., Carlson, C. S. & Lewis, J. L. Evaluation of fracture toughness of cartilage by micropenetration. J. Mater. Sci. Mater. Med. 14, 631–639 (2003)

Lake, G. J. Fatigue and fracture of elastomers. Rubber Chem. Technol. 68, 435–460 (1995)

Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003)

Huang, T. et al. A novel hydrogel with high mechanical strength: a macromolecular microsphere composite hydrogel. Adv. Mater. 19, 1622–1626 (2007)

Sakai, T. et al. Design and fabrication of a high-strength hydrogel with ideally homogeneous network structure from tetrahedron-like macromonomers. Macromolecules 41, 5379–5384 (2008)

Seitz, M. E. et al. Fracture and large strain behavior of self-assembled triblock copolymer gels. Soft Matter 5, 447–456 (2009)

Lin, W.-C., Fan, W., Marcellan, A., Hourdet, D. & Creton, C. Large strain and fracture properties of poly(dimethylacrylamide)/silica hybrid hydrogels. Macromolecules 43, 2554–2563 (2010)

Wang, Q. G. et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339–343 (2010)

Haque, M. A., Kurokawa, T., Kamita, G. & Gong, J. P. Lamellar bilayers as reversible sacrificial bonds to toghen hydrogel: hysteresis, self-recovery, fatigue resistance, and crack blunting. Macromolecules 44, 8916–8924 (2011)

Tuncaboylu, D. C., Sari, M., Oppermann, W. & Okay, O. Tough and self-healing hydrogels formed via hydrophobic interactions. Macromolecules 44, 4997–5005 (2011)

Hui, C.-Y., Jagota, A., Bennison, S. J. & Londono, J. D. Crack blunting and the strength of soft elastic solids. Proc. R. Soc. Lond. A 459, 1489–1516 (2003)

Yu, Q. M., Tanaka, Y., Furukawa, H., Kurokawa, T. & Gong, J. P. Direct observation of damage zone around crack tips in double-network gels. Macromolecules 42, 3852–3855 (2009)

Webber, R. E., Creton, C., Brown, H. R. & Gong, J. P. Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 40, 2919–2927 (2007)

Henderson, K. J., Zhou, T. C., Otim, K. J. & Shull, K. R. Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43, 6193–6201 (2010)

Kong, H. J., Wong, E. & Mooney, D. J. Independent control of rigidity and toughness of polymeric hydrogels. Macromolecules 36, 4582–4588 (2003)

Baumberger, T. & Ronsin, O. From thermally activated to viscosity controlled fracture of biopolymer hydrogels. J. Chem. Phys. 130, 061102 (2009)

Evans, A. G. Perspective on the development of high-toughness ceramics. J. Am. Ceram. Soc. 73, 187–206 (1990)

Brown, H. R. A model of fracture of double network gels. Macromolecules 40, 3815–3818 (2007)

Tanaka, Y. A local damage model for anomalous high toughness of double-network gels. Europhys. Lett. 78, 56005 (2007)

Jackson, A. P. Measurement of the fracture toughness of some contact lens hydrogels. Biomater. 11, 403–407 (1990)

Hernández, R. M., Orive, G., Murua, A. & Pedraz, J. L. Microcapsules and microcarriers for in situ cell delivery. Adv. Drug Deliv. Rev. 62, 711–730 (2010)

Maldonado-Codina, C. & Efron, N. Impact of manufacturing technology and material composition on the mechanical properties of hydrogel contact lenses. Ophthalmic Physiol. Opt. 24, 551–561 (2004)