Highly specific ubiquitin-competing molecules effectively promote frataxin accumulation and partially rescue the aconitase defect in Friedreich ataxia cells

Neurobiology of Disease - Tập 75 - Trang 91-99 - 2015
Alessandra Rufini1,2, Francesca Cavallo1, Ivano Condò1, Silvia Fortuni1,2, Gabriella De Martino1, Ottaviano Incani1, Almerinda Di Venere3, Monica Benini1, Damiano Sergio Massaro1, Gaetano Arcuri1, Dario Serio1, Florence Malisan1, Roberto Testi1,2
1Laboratory of Signal Transduction, Department of Biomedicine and Prevention, University of Rome “Tor Vergata,” Via Montpellier 1, Rome 00133, Italy
2Fratagene Therapeutics Ltd., 22 Northumberland Rd., Dublin, Ireland
3Department of Experimental Medicine and Surgery, University of Rome “Tor Vergata,” Via Montpellier 1, Rome 00133, Italy

Tài liệu tham khảo

Al-Mahdawi, 2008, The Friedreich ataxia GAA repeat expansion mutation induces comparable epigenetic changes in human and transgenic mouse brain and heart tissues, Hum. Mol. Genet., 17, 735, 10.1093/hmg/ddm346 Bedford, 2011, Ubiquitin-like protein conjugation and the ubiquitin-proteasome system as drug targets, Nat. Rev. Drug Discov., 10, 29, 10.1038/nrd3321 Bidichandani, 1998, The GAA triplet-repeat expansion in Friedreich ataxia interferes with transcription and may be associated with an unusual DNA structure, Am. J. Hum. Genet., 62, 111, 10.1086/301680 Brady, 2000, Fast prediction and visualization of protein binding pockets with PASS, J. Comput. Aided Mol. Des., 14, 383, 10.1023/A:1008124202956 Brownell, 2010, Substrate-assisted inhibition of ubiquitin-like protein-activating enzymes: the NEDD8 E1 inhibitor MLN4924 forms a NEDD8-AMP mimetic in situ, Mol. Cell, 37, 102, 10.1016/j.molcel.2009.12.024 Bulteau, 2004, Frataxin acts as an iron chaperone protein to modulate mitochondrial aconitase activity, Science (New York, N.Y.), 305, 242, 10.1126/science.1098991 Campuzano, 1996, Friedreich's ataxia: autosomal recessive disease caused by an intronic GAA triplet repeat expansion, Science (New York, N.Y.), 271, 1423, 10.1126/science.271.5254.1423 Capra, 2009, Predicting protein ligand binding sites by combining evolutionary sequence conservation and 3D structure, PLoS Comput. Biol., 5, e1000585, 10.1371/journal.pcbi.1000585 Chen, 2008, Targeting the p27 E3 ligase SCF(Skp2) results in p27- and Skp2-mediated cell-cycle arrest and activation of autophagy, Blood, 111, 4690, 10.1182/blood-2007-09-112904 Cnop, 2013, Diabetes in Friedreich ataxia, J. Neurochem., 126, 94, 10.1111/jnc.12216 Condò, 2006, A pool of extramitochondrial frataxin that promotes cell survival, J. Biol. Chem., 281, 16750, 10.1074/jbc.M511960200 Condò, 2007, In vivo maturation of human frataxin, Hum. Mol. Genet., 16, 1534, 10.1093/hmg/ddm102 Condò, 2010, Molecular control of the cytosolic aconitase/IRP1 switch by extramitochondrial frataxin, Hum. Mol. Genet., 19, 1221, 10.1093/hmg/ddp592 Delatycki, 2009, Evaluating the progression of Friedreich ataxia and its treatment, J. Neurol., 256, 36, 10.1007/s00415-009-1007-y Dhe-Paganon, 2000, Crystal structure of human frataxin, J. Biol. Chem., 275, 30753, 10.1074/jbc.C000407200 Ding, 2006, Structure-based design of spiro-oxindoles as potent, specific small-molecule inhibitors of the MDM2-p53 interaction, J. Med. Chem., 49, 3432, 10.1021/jm051122a Glickman, 2002, The ubiquitin-proteasome proteolytic pathway: destruction for the sake of construction, Physiol. Rev., 82, 373, 10.1152/physrev.00027.2001 Greene, 2007, Repeat-induced epigenetic changes in intron 1 of the frataxin gene and its consequences in Friedreich ataxia, Nucleic Acids Res., 35, 3383, 10.1093/nar/gkm271 Herman, 2006, Histone deacetylase inhibitors reverse gene silencing in Friedreich's ataxia, Nat. Chem. Biol., 2, 551, 10.1038/nchembio815 Huang, 2009, MetaPocket: a meta approach to improve protein ligand binding site prediction, OMICS, 13, 325, 10.1089/omi.2009.0045 Huang, 2006, LIGSITEcsc: predicting ligand binding sites using the Connolly surface and degree of conservation, BMC Struct. Biol., 6, 19, 10.1186/1472-6807-6-19 Issaeva, 2004, Small molecule RITA binds to p53, blocks p53-HDM-2 interaction and activates p53 function in tumors, Nat. Med., 10, 1321, 10.1038/nm1146 Kawabata, 2010, Detection of multiscale pockets on protein surfaces using mathematical morphology, Proteins, 78, 1195, 10.1002/prot.22639 Kisselev, 2012, Proteasome inhibitors: an expanding army attacking a unique target, Chem. Biol., 19, 99, 10.1016/j.chembiol.2012.01.003 Koutnikova, 1998, Maturation of wild-type and mutated frataxin by the mitochondrial processing peptidase, Hum. Mol. Genet., 7, 1485, 10.1093/hmg/7.9.1485 Kussie, 1996, Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain, Science, 274, 948, 10.1126/science.274.5289.948 Laskowski, 1995, SURFNET: a program for visualizing molecular surfaces, cavities, and intermolecular interactions, J. Mol. Graph., 13, 307 Laurie, 2005, Q-SiteFinder: an energy-based method for the prediction of protein-ligand binding sites, Bioinformatics, 21, 1908, 10.1093/bioinformatics/bti315 Le Guilloux, 2009, Fpocket: an open source platform for ligand pocket detection, BMC Bioinformatics, 10, 168, 10.1186/1471-2105-10-168 Marmolino, 2009, PPAR-gamma agonist Azelaoyl PAF increases frataxin protein and mRNA expression: new implications for the Friedreich's ataxia therapy, Cerebellum, 8, 98, 10.1007/s12311-008-0087-z Martelli, 2014, Dysregulation of cellular iron metabolism in Friedreich ataxia: from primary iron-sulfur cluster deficit to mitochondrial iron accumulation, Front. Pharmacol., 5, 130, 10.3389/fphar.2014.00130 Morris, 2009, AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility, J Comput Chem, 30, 2785, 10.1002/jcc.21256 Musco, 2000, Towards a structural understanding of Friedreich's ataxia: the solution structure of frataxin, Structure, 8, 695, 10.1016/S0969-2126(00)00158-1 Oprea, 2000, Property distribution of drug-related chemical databases, J. Comput. Aided Mol. Des., 14, 251, 10.1023/A:1008130001697 Pandolfo, 2009, The pathogenesis of Friedreich ataxia and the structure and function of frataxin, J. Neurol., 256, 9, 10.1007/s00415-009-1003-2 Parkinson, 2013, Clinical features of Friedreich's ataxia: classical and atypical phenotypes, J. Neurochem., 126, 103, 10.1111/jnc.12317 Pastore, 2013, Frataxin: a protein in search for a function, J. Neurochem., 126, 43, 10.1111/jnc.12220 Paupe, 2009, Impaired nuclear Nrf2 translocation undermines the oxidative stress response in Friedreich ataxia, PLoS One, 4, e4253, 10.1371/journal.pone.0004253 Perdomini, 2014, Prevention and reversal of severe mitochondrial cardiomyopathy by gene therapy in a mouse model of Friedreich's ataxia, Nat. Med., 20, 542, 10.1038/nm.3510 Rentsch, 2013, Synthesis and pharmacology of proteasome inhibitors, Angew. Chem., 52, 5450, 10.1002/anie.201207900 Richardson, 2006, Bortezomib: proteasome inhibition as an effective anticancer therapy, Annu. Rev. Med., 57, 33, 10.1146/annurev.med.57.042905.122625 Rotig, 1997, Aconitase and mitochondrial iron-sulphur protein deficiency in Friedreich ataxia, Nat. Genet., 17, 215, 10.1038/ng1097-215 Roxburgh, 2012, Small molecules that bind the Mdm2 RING stabilize and activate p53, Carcinogenesis, 33, 791, 10.1093/carcin/bgs092 Rufini, 2011, Preventing the ubiquitin-proteasome-dependent degradation of frataxin, the protein defective in Friedreich's ataxia, Hum. Mol. Genet., 20, 1253, 10.1093/hmg/ddq566 Sakamoto, 2001, Sticky DNA, a self-associated complex formed at long GAA*TTC repeats in intron 1 of the frataxin gene, inhibits transcription, J. Biol. Chem., 276, 27171, 10.1074/jbc.M101879200 Schulz, 2009, Diagnosis and treatment of Friedreich ataxia: a European perspective, Nat. Rev. Neurol., 5, 222, 10.1038/nrneurol.2009.26 Seeliger, 2010, Ligand docking and binding site analysis with PyMOL and Autodock/Vina, J. Comput. Aided Mol. Des., 24, 417, 10.1007/s10822-010-9352-6 Shan, 2013, Frataxin deficiency leads to defects in expression of antioxidants and Nrf2 expression in dorsal root ganglia of the Friedreich's ataxia YG8R mouse model, Antioxid. Redox Signal., 19, 1481, 10.1089/ars.2012.4537 Shen, 2013, Targeting the ubiquitin-proteasome system for cancer therapy, Expert Opin. Ther. Targets, 17, 1091, 10.1517/14728222.2013.815728 Shindyalov, 1998, Protein structure alignment by incremental combinatorial extension (CE) of the optimal path, Protein Eng., 11, 739, 10.1093/protein/11.9.739 Soucy, 2009, An inhibitor of NEDD8-activating enzyme as a new approach to treat cancer, Nature, 458, 732, 10.1038/nature07884 Tomassini, 2012, Interferon gamma upregulates frataxin and corrects the functional deficits in a Friedreich ataxia model, Hum. Mol. Genet., 21, 2855, 10.1093/hmg/dds110 Treier, 1994, Ubiquitin-dependent c-Jun degradation in vivo is mediated by the delta domain, Cell, 78, 787, 10.1016/S0092-8674(94)90502-9 Trott, 2010, AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading, J Comput Chem, 31, 455 Vassilev, 2004, In vivo activation of the p53 pathway by small-molecule antagonists of MDM2, Science (New York, N.Y.), 303, 844, 10.1126/science.1092472 Vaubel, 2013, Iron-sulfur cluster synthesis, iron homeostasis and oxidative stress in Friedreich ataxia, Mol. Cell. Neurosci., 55, 50, 10.1016/j.mcn.2012.08.003 Weidemann, 2013, Cardiomyopathy of Friedreich ataxia, J. Neurochem., 126, 88, 10.1111/jnc.12217 Wu, 2012, Specific small molecule inhibitors of Skp2-mediated p27 degradation, Chem. Biol., 19, 1515, 10.1016/j.chembiol.2012.09.015 Yandim, 2013, Gene regulation and epigenetics in Friedreich's ataxia, J. Neurochem., 126, 21, 10.1111/jnc.12254 Yang, 2005, Small molecule inhibitors of HDM2 ubiquitin ligase activity stabilize and activate p53 in cells, Cancer Cell, 7, 547, 10.1016/j.ccr.2005.04.029 Yu, 2010, Roll: a new algorithm for the detection of protein pockets and cavities with a rolling probe sphere, Bioinformatics, 26, 46, 10.1093/bioinformatics/btp599 Zhang, 2014, Development of inhibitors in the ubiquitination cascade, FEBS Lett., 588, 356, 10.1016/j.febslet.2013.11.003