Highly sensitive chemiluminescence sensing system for organophosphates using mimic LDH supported ZIF-8 nanocomposite
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kim, 2017, Exposure to pesticides and the associated human health effects, Sci. Total Environ., 575, 525, 10.1016/j.scitotenv.2016.09.009
Kumar, 2015, Recent advancements in sensing techniques based on functional materials for organophosphate pesticides, Biosens. Bioelectron., 70, 469, 10.1016/j.bios.2015.03.066
Bazmandegan‐Shamili, 2017, Preparation of magnetic mesoporous silica composite for the solid‐phase microextraction of diazinon and malathion before their determination by high‐performance liquid chromatography, J. Sep. Sci., 40, 1731, 10.1002/jssc.201601339
Behbahani, 2018, The conjunction of a new ultrasonic-assisted dispersive solid-phase extraction method with HPLC-DAD for the trace determination of diazinon in biological and water media, New J. Chem., 42, 4289, 10.1039/C7NJ03788K
Soisungnoen, 2012, Determination of organophosphorus pesticides using dispersive liquid-liquid microextraction combined with reversed electrode polarity stacking mode-micellar electrokinetic chromatography, Talanta, 98, 62, 10.1016/j.talanta.2012.06.043
Sohrabi, 2012, Cloud point extraction for determination of Diazinon: optimization of the effective parameters using Taguchi method, Chemometr. Intell. Lab. Syst., 110, 49, 10.1016/j.chemolab.2011.09.009
Lu, 2018, Bimetallic Pd@Au nanorods based ultrasensitive acetylcholinesterase biosensor for determination of organophosphate pesticides, Sens. Actuators B Chem., 255, 2575, 10.1016/j.snb.2017.09.063
Wei, 2017, Amperometric determination of organophosphate pesticides using a acetylcholinesterase based biosensor made from nitrogen-doped porous carbon deposited on a boron-doped diamond electrode, Microchim. Acta, 184, 3461, 10.1007/s00604-017-2380-3
Su, 2016, Strategies in liquid-phase chemiluminescence and their applications in bioassay, TrAC, Trends Anal. Chem., 82, 394, 10.1016/j.trac.2016.07.002
Su, 2014, Recent advances in analytical applications of nanomaterials in liquid-phase chemiluminescence, Appl. Spectrosc. Rev., 49, 201, 10.1080/05704928.2013.819514
Tiwari, 2017, Recent advances and developments on integrating nanotechnology with chemiluminescence assays, Talanta, 180, 1, 10.1016/j.talanta.2017.12.031
Nasir, 2017, An overview on enzyme-mimicking nanomaterials for use in electrochemical and optical assays, Microchim. Acta, 184, 323, 10.1007/s00604-016-2036-8
Chen, 2019, Designed fabrication of biomimetic metal–organic frameworks for catalytic applications, Coord. Chem. Rev., 378, 445, 10.1016/j.ccr.2018.01.016
Furukawa, 2013, The chemistry and applications of metal-organic frameworks, Science, 341, 10.1126/science.1230444
Gangu, 2016, A review on contemporary Metal–Organic Framework materials, Inorg. Chim. Acta Rev., 446, 61, 10.1016/j.ica.2016.02.062
Jiao, 2018, Metal-organic frameworks as platforms for catalytic applications, Adv. Mater., 30, 10.1002/adma.201703663
Vikrant, 2018, Potential utility of metal-organic framework-based platform for sensing pesticides, ACS Appl. Mater. Interfaces, 10, 8797, 10.1021/acsami.8b00664
Chen, 2018, Metal-organic framework-derived porous materials for catalysis, Coord. Chem. Rev., 62, 1, 10.1016/j.ccr.2018.02.008
Yi, 2016, Chemical sensors based on metal-organic frameworks, ChemPlusChem, 81, 675, 10.1002/cplu.201600137
Kang, 2019, Metal-organic frameworks with catalytic centers: from synthesis to catalytic application, Coord. Chem. Rev., 378, 262, 10.1016/j.ccr.2018.02.009
Lei, 2014, Design and sensing applications of metal-organic framework composites, TrAC, Trends Analyt. Chem., 58, 71, 10.1016/j.trac.2014.02.012
Nath, 2016, Metal organic frameworks mimicking natural enzymes: a structural and functional analogy, Chem. Soc. Rev., 45, 4127, 10.1039/C6CS00047A
Chen, 2016, Biomimetic catalysis of metal-organic frameworks, Dalton Trans., 45, 9744, 10.1039/C6DT00325G
Park, 2006, Exceptional chemical and thermal stability of zeolitic imidazolate frameworks, Proc. Nat. Acad. Sci., 103, 10186, 10.1073/pnas.0602439103
Liu, 2016, In situ growth of ZIF-8 nanocrystals on layered double hydroxide nanosheets for enhanced CO2 capture, Dalton Trans., 45, 12632, 10.1039/C6DT02083F
Li, 2015, Metal-organic framework composites: from fundamentals to applications, Nanoscale, 7, 7482, 10.1039/C5NR00518C
Yang, 2017, Metal-organic frameworks meet metal nanoparticles: synergistic effect for enhanced catalysis, Chem. Soc. Rev., 46, 4774, 10.1039/C6CS00724D
Yu, 2017, Preparation of two dimensional layered double hydroxide nanosheets and their applications, Chem. Soc. Rev., 46, 5950, 10.1039/C7CS00318H
Mishra, 2018, Layered double hydroxides: a brief review from fundamentals to application as evolving biomaterials, Appl. Clay Sci., 153, 172, 10.1016/j.clay.2017.12.021
Chakraborty, 2018, Facile synthesis of MgAl-layered double hydroxide supported metal organic framework nanocomposite for adsorptive removal of methyl orange dye, Colloid Interface Sci. Commun., 24, 35, 10.1016/j.colcom.2018.03.005
Yang, 2018, Development of zeolitic imidazolate framework-67 functionalized Co-Al LDH for CO2 adsorption, Colloids Surf. A Physicochem. Eng. Asp., 552, 16, 10.1016/j.colsurfa.2018.05.014
Khataee, 2018, ZnFe-Cl nanolayered double hydroxide as a novel catalyst for sonocatalytic degradation of an organic dye, Ultrason. Sonochem., 40, 703, 10.1016/j.ultsonch.2017.08.014
Pan, 2011, Rapid synthesis of zeolitic imidazolate framework-8 (ZIF-8) nanocrystals in an aqueous system, Chem. Commun., 47, 2071, 10.1039/c0cc05002d
Wu, 2015, Zeolitic imidazolate metal organic framework ZIF-8 with ultra-high adsorption capacity bound tetracycline in aqueous solution, RSC Adv., 5, 82127, 10.1039/C5RA15497A
Zhou, 2013, A single antibody sandwich electrochemiluminescence immunosensor based on protein magnetic molecularly imprinted polymers mimicking capture probes, Sens. Actuators B Chem., 186, 300, 10.1016/j.snb.2013.06.021
Han, 2005, Flow injection chemiluminescence determination of hemin using the rhodamine B-H2O2-NaOH system, Microchim. Acta, 149, 281, 10.1007/s00604-004-0312-5
Abolhasani, 2014, Determination of copper in water by ionic liquid based microextraction and chemiluminescence detection, Anal. Lett., 47, 1528, 10.1080/00032719.2013.878839
Jiang, 2012, Peroxidase-like activity of chitosan stabilized silver nanoparticles for visual and colorimetric detection of glucose, Analyst, 137, 5560, 10.1039/c2an35911a
Liang, 2012, Fe3O4 magnetic nanoparticle peroxidase mimetic-based colorimetric assay for the rapid detection of organophosphorus pesticide and nerve agent, Anal. Chem., 85, 308, 10.1021/ac302781r
Fu, 2013, Highly sensitive colorimetric detection of organophosphate pesticides using copper catalyzed click chemistry, Talanta, 103, 110, 10.1016/j.talanta.2012.10.016
Biswas, 2016, Gold nanorods as peroxidase mimetics and its application for colorimetric biosensing of malathion, Sens. Actuators B Chem., 231, 584, 10.1016/j.snb.2016.03.066
Kumar, 2012, A review of permissible limits of drinking water, Indian J. Occup. Environ. Med., 16, 40, 10.4103/0019-5278.99696
Crommentuijn, 2000, Maximum permissible and negligible concentrations for some organic substances and pesticides, J. Environ. Manage., 58, 297, 10.1006/jema.2000.0334
Dong, 2013, Organo-modified hydrotalcite-quantum dot nanocomposites as a novel chemiluminescence resonance energy transfer probe, Anal. Chem., 85, 3363, 10.1021/ac400041t
Wang, 2012, Chemiluminescence flow biosensor for glucose using Mg-Al carbonate layered double hydroxides as catalysts and buffer solutions, Biosens. Bioelectron., 38, 284, 10.1016/j.bios.2012.06.003
Wang, 2012, Carbonate interlayered hydrotalcites-enhanced peroxynitrous acid chemiluminescence for high selectivity sensing of ascorbic acid, Analyst, 137, 1876, 10.1039/c2an00030j
Wang, 2013, Universal chemiluminescence flow-through device based on directed self-assembly of solid-state organic chromophores on layered double hydroxide matrix, Anal. Chem., 85, 2436, 10.1021/ac303487b