Highly permeable innovative PDMS coated polyethersulfone membranes embedded with activated carbon for gas separation

Journal of Natural Gas Science and Engineering - Tập 81 - Trang 103406 - 2020
Bilal Haider1,2, Muhammad Rizwan Dilshad2, Muhammad Atiq ur Rehman3, Muhammad Sarfraz Akram4, Malte Kaspereit1
1Institute of Separation Science and Technology, Department of Chemical and Biological Engineering, Friedrich Alexander University (FAU), Erlangen, Nürnberg, Germany
2Institute of Chemical Engineering and Technology, University of the Punjab, P.O. Box 54590, Lahore, Pakistan
3Institute of BioMaterials, Department of Materials Science and Engineering, Friedrich Alexander University (FAU), Erlangen, Nürnberg, Germany
4Institute of Energy and Environmental Engineering, University of the Punjab, P.O. Box 54590, Lahore, Pakistan

Tài liệu tham khảo

Abdul Hadi, 2015, Polyethersulfone/polyvinyl acetate blend membrane for CO2/CH4 gas separation, Appl. Mech. Mater., 754–755, 44, 10.4028/www.scientific.net/AMM.754-755.44 Ahn, 2010, Gas transport behavior of mixed-matrix membranes composed of silica nanoparticles in a polymer of intrinsic microporosity (PIM-1), J. Membr. Sci., 3446, 280, 10.1016/j.memsci.2009.09.047 Anson, 2004, ABS copolymer-activated carbon mixed matrix membranes for CO2/CH4 separation, J. Membr. Sci., 243, 19, 10.1016/j.memsci.2004.05.008 Baker, 2002, Future directions of membrane gas separation technology, Ind. Eng. Chem. Res., 41, 1393, 10.1021/ie0108088 Baker, 2004 Brunetti, 2010, Membrane technologies for CO2 separation, J. Membr. Sci., 359, 115, 10.1016/j.memsci.2009.11.040 Bernardo, 2013, 30 Years of membrane technology for gas separation, Chem. Eng. Trans., 32, 1999 Chung, 1992, Development of asymmetric hollow fibers from polyimdes for air separation, J. Membr. Sci., 75, 181, 10.1016/0376-7388(92)80016-D Dilshad, 2019, Effect of alumina on the performance and characterization of cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation, Separ. Purif. Technol., 210, 627, 10.1016/j.seppur.2018.08.026 Dilshad, 2017, Fabrication and performance characterization of novel zinc oxide filled cross-linked PVA/PEG 600 blended membranes for CO2/N2 separation, J. Ind. Eng. Chem., 55, 65, 10.1016/j.jiec.2017.06.029 Dong, 2013, Challenges and opportunities for mixed-matrix membranes for gas separation, J. Mater. Chem. A, 1, 4610, 10.1039/c3ta00927k Junaidi, 2014, Carbon dioxide separation using asymmetric polysulfone mixed matrix membranes incorporated with SAPO-34 zeolite, Fuel Process. Technol., 118, 125, 10.1016/j.fuproc.2013.08.009 García, 2010, Effect of the particle size and particle agglomeration on composite membrane performance, J. Appl. Polym. Sci., 118, 2417 García, 2012, High activated carbon loading mixed matrix membranes for gas separations, J. Mater. Sci., 47, 3064, 10.1007/s10853-011-6138-8 Haider, 2020, Highly permeable novel PDMS coated asymmetric polyethersulfone membranes loaded with SAPO-34 zeolite for carbon dioxide separation, Separ. Purif. Technol., 248, 116899, 10.1016/j.seppur.2020.116899 Hussain, 2011, Mixed-matrix membrane for gas separation: polydimethylsiloxane filled with zeolite, Chem. Eng. Technol., 35, 561, 10.1002/ceat.201100419 Jia, 1992, Preparation and characterization of thin-film zeolite–PDMS composite membranes, J. Membr. Sci., 73, 119, 10.1016/0376-7388(92)80122-Z Kamal, 2013, Effects of THF as cosolvent in the preparation of polydimethylsiloxane/polyethersulfone membrane for gas separation, Polym. Eng. Sci., 54, 2177, 10.1002/pen.23767 Khoo, 2006, Life cycle investigation of CO2 recovery and sequestration, Environ. Sci. Technol., 40, 4016, 10.1021/es051882a Koros, 2002, Mixed matrix membrane materials with glassy polymers. Part 1, Polym. Eng. Sci., 42, 1420, 10.1002/pen.11041 Kusworo, 2010, Application of activated carbon mixed matrix membrane for oxygen purification, Int. J. Sci. Eng., 1, 21 Lewis, 2019, Activated carbon in mixed-matrix membranes, Separ. Purif. Rev., 1 Madaeni, 2012, Effect of titanium dioxide nanoparticles on polydimethylsiloxane/polyethersulfone composite membranes for gas separation, Polym. Eng. Sci., 52, 2664, 10.1002/pen.23223 Madaeni, 2013, Effect of coating method on gas separation by PDMS/PES membrane, Polym. Eng. Sci., 53, 1878, 10.1002/pen.23456 Madaeni, 2009, Fabrication and characterization of PDMS coated PES membranes for separation of ethylene from nitrogen, J. Polym. Res., 16, 591, 10.1007/s10965-008-9264-5 Moradi, 2016, Using PDMS coated TFC-RO membranes for CO2/N2 gas separation: experimental study, modeling and optimization, Polym. Test., 56, 287, 10.1016/j.polymertesting.2016.10.022 Mohammadi, 2008, Acid gas permeation behavior through poly(Ester Urethane Urea) membrane, Ind. Eng. Chem. Res., 47, 7361, 10.1021/ie071493k Moradihamedani, 2014, Polysulfone/zinc oxide nanoparticle mixed matrix membranes for CO2/CH4 separation, J. Appl. Polym. Sci., 131, 1, 10.1002/app.39745 Mukherjee, 2019, Review of post-combustion carbon dioxide capture technologies using activated carbon, J. Environ. Sci., 83, 46, 10.1016/j.jes.2019.03.014 Pandey, 2001, Membranes for gas separation, Prog. Polym. Sci., 26, 853, 10.1016/S0079-6700(01)00009-0 Powell, 2006, Polymeric CO2/N2 gas separation membranes for the capture of carbon dioxide from power plant flue gases, J. Membr. Sci., 279, 1, 10.1016/j.memsci.2005.12.062 Qin, 2017, Air quality, health, and climate implications of China’s synthetic natural gas development, Proc. Natl. Acad. Sci. Unit. States Am., 114, 4887, 10.1073/pnas.1703167114 Qu, 2010, Polyethersulfone composite membrane blended with cellulose fibrils, BioResources, 5, 2323, 10.15376/biores.5.4.2323-2336 Ranjbaran, 2015, The novel Elvaloy4170/functionalized multi-walled carbon nanotubes mixed matrix membranes: fabrication, characterization and gas separation study, J. Taiwan Inst. Chem. Eng., 49, 220, 10.1016/j.jtice.2014.11.032 Raymond, 1993, Comparison of mixed and pure gas permeation characteristics for CO2 and CH4 in copolymers and blends containing methyl methacrylate units, J. Membr. Sci., 77, 49, 10.1016/0376-7388(93)85234-N Robeson, 1991, Correlation of separation factor versus permeability for polymeric membranes, J. Membr. Sci., 62, 165, 10.1016/0376-7388(91)80060-J Robeson, 2008, The upper bound revisited, J. Membr. Sci., 320, 390, 10.1016/j.memsci.2008.04.030 Rufford, 2014, A review of conventional and emerging process technologies for the recovery of helium from natural gas, Adsorpt. Sci. Technol., 32, 49, 10.1260/0263-6174.32.1.49 Silva, 2017, Polydimethylsiloxane membranes containing multi-walled carbon nanotubes for gas separation, Mater. Res., 20, 1454, 10.1590/1980-5373-mr-2016-0825 Sadeghi, 2008, Gas permeation properties of ethylene vinyl acetate–silica nanocomposite membranes, J. Membr. Sci., 322, 423, 10.1016/j.memsci.2008.05.077 Sadrzadeh, 2010, Preparation and characterization of a composite PDMS membrane on CA support, Polym. Adv. Technol., 21, 568, 10.1002/pat.1467 Sadrzadeh, 2009, Effect of operating parameters on pure and mixed gas permeation properties of a synthesized composite PDMS/PA membrane, J. Membr. Sci., 342, 327, 10.1016/j.memsci.2009.07.015 Saqib, 2020, Perylene based novel mixed matrix membranes with enhanced selective pure and mixed gases (CO2, CH4, and N2) separation, J. Nat. Gas Sci. Eng., 73, 103072, 10.1016/j.jngse.2019.103072 Mohan, 2016, Sustainable development of coconut shell activated carbon (CSAC) & magnetic coconut shell activated carbon (MCSAC) for phenol (2-nitrophenol) removal, RSC Adv., 6, 85390, 10.1039/C6RA19756F Scholes, 2016, Helium separation through polymeric membranes: selectivity targets, J. Membr. Sci., 520, 221, 10.1016/j.memsci.2016.07.064 Scholes, 2017, Review of membranes for helium separation and purification, Membranes, 7, 1, 10.3390/membranes7010009 Sharafian, 2017, A review of liquefied natural gas refueling station designs, Renew. Sustain. Energy Rev., 69, 503, 10.1016/j.rser.2016.11.186 Singh, 2016, Measurement and analysis of adsorption isotherms of CO2 on activated carbon, Appl. Therm. Eng., 97, 77, 10.1016/j.applthermaleng.2015.10.052 Sridhar, 2008, Characterization and gas permeability of an activated carbon-loaded PEBAX 2533 membrane, Des. Monomers Polym., 11, 17, 10.1163/156855508X292392 Sukoyo, 2019, Unravelling the potency of activated carbon powder derived from cultivated marine microalgae as a promising filler in mixed matrix membranes, Agric. Eng., 2, 188 Suleman, 2016, Characterization and performance evaluation of PDMS/PSF membrane for CO2/CH4 separation under the effect of swelling, Procedia Eng., 148, 176, 10.1016/j.proeng.2016.06.525 Sun, 2013, Pervaporation of ethanol/water mixture by organophilic nano-silica filled PDMS composite membranes, Desalination, 322, 159, 10.1016/j.desal.2013.05.008 Talakesh, 2012, Gas separation properties of poly(ethylene glycol)/poly(tetramethylene glycol) based polyurethane membranes, J. Membr. Sci., 415–416, 469, 10.1016/j.memsci.2012.05.033 Vinoba, 2017, Recent progress of fillers in mixed matrix membranes for CO2 separation: a review, Separ. Purif. Technol., 188, 431, 10.1016/j.seppur.2017.07.051 Wang, 1997, Gas permselection properties in silicone-coated asymmetric polyethersulfone membranes, J. Appl. Polym. Sci., 66, 837, 10.1002/(SICI)1097-4628(19971031)66:5<837::AID-APP3>3.0.CO;2-W Wang, 2002, Characterization of hollow fiber membranes in a permeator using binary gas mixtures, Chem. Eng. Sci., 57, 967, 10.1016/S0009-2509(01)00435-3 Weigelt, 2018, Development and characterization of defect-free Matrimid® mixed-matrix membranes containing activated carbon particles for gas separation, Polymer, 10, 1 Xiao, 2009, The strategies of molecular architecture and modification of polyimide-based membranes for CO2 removal from natural gas- A review, Prog. Polym. Sci., 34, 561, 10.1016/j.progpolymsci.2008.12.004 Yeom, 2000, Study of transport of pure and mixed CO2/N2 gases through polymeric membranes, J. Appl. Polym. Sci., 78, 179, 10.1002/1097-4628(20001003)78:1<179::AID-APP220>3.0.CO;2-Z Zornoza, 2009, Mesoporous silica sphere-polysulfone mixed matrix membranes for gas separation, Langmuir, 25, 5903, 10.1021/la900656z Zoppi, 2000, Hybrid films of poly(ethylene oxide-b-amide-6) containing sol-gel silicon or titanium oxide as inorganic fillers: effect of morphology and mechanical properties on gas permeability, Polymer, 41, 5461, 10.1016/S0032-3861(99)00751-X