Highly parallelized human embryonic stem cell differentiation to cardiac mesoderm in nanoliter chambers on a microfluidic chip
Tóm tắt
Human stem cell-derived cells and tissues hold considerable potential for applications in regenerative medicine, disease modeling and drug discovery. The generation, culture and differentiation of stem cells in low-volume, automated and parallelized microfluidic chips hold great promise to accelerate the research in this domain. Here, we show that we can differentiate human embryonic stem cells (hESCs) to early cardiac mesodermal cells in microfluidic chambers that have a volume of only 30 nanoliters, using discontinuous medium perfusion. 64 of these chambers were parallelized on a chip which contained integrated valves to spatiotemporally isolate the chambers and automate cell culture medium exchanges. To confirm cell pluripotency, we tracked hESC proliferation and immunostained the cells for pluripotency markers SOX2 and OCT3/4. During differentiation, we investigated the effect of different medium perfusion frequencies on cell reorganization and the expression of the early cardiac mesoderm reporter MESP1mCherry by live-cell imaging. Our study demonstrates that microfluidic technology can be used to automatically culture, differentiate and study hESC in very low-volume culture chambers even without continuous medium perfusion. This result is an important step towards further automation and parallelization in stem cell technology.
Tài liệu tham khảo
N. Abdolvand, R. Tostoes, W. Raimes et al., Long-term retinal differentiation of human induced pluripotent stem cells in a continuously perfused microfluidic culture device. Biotechnol. J. 14, 1800323 (2019). https://doi.org/10.1002/biot.201800323
V.V. Abhyankar, D.J. Beebe, Spatiotemporal micropatterning of cells on arbitrary substrates. Anal. Chem. 79, 4066–4073 (2007). https://doi.org/10.1021/ac062371p
K. Alessandri, M. Feyeux, B. Gurchenkov et al., A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC). Lab Chip 16, 1593–1604 (2016). https://doi.org/10.1039/c6lc00133e
S.N. Bhatia, D.E. Ingber, Microfluidic organs-on-chips. Nat. Biotechnol. 32, 760–772 (2014). https://doi.org/10.1038/nbt.2989
D.M. Chadly, A.M. Oleksijew, K.S. Coots et al., Full factorial microfluidic designs and devices for parallelizing human pluripotent stem cell differentiation. SLAS Technol. 24, 41–54 (2019). https://doi.org/10.1177/2472630318783497
H. Clevers, modeling development and disease with organoids. Cell 165, 1586–1597 (2016). https://doi.org/10.1016/j.cell.2016.05.082
S.C. Den Hartogh, C. Schreurs, J.J. Monshouwer-Kloots et al., hESCs enable studying early human cardiac differentiation. Stem Cells 33, 56–67 (2015)
J. Drost, H. Clevers, Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018). https://doi.org/10.1038/s41568-018-0007-6
D. Dutta, I. Heo, H. Clevers, Disease modeling in stem cell-derived 3D organoid systems. Trends Mol. Med. 23, 393–410 (2017). https://doi.org/10.1016/j.molmed.2017.02.007
P. Fattahi, A. Haque, K.J. Son et al., Microfluidic devices, accumulation of endogenous signals and stem cell fate selection. Differentiation 112, 39–46 (2020). https://doi.org/10.1016/j.diff.2019.10.005
E. Figallo, C. Cannizzaro, S. Gerecht et al., Micro-bioreactor array for controlling cellular microenvironments. Lab Chip 7, 710–719 (2007). https://doi.org/10.1039/b700063d
O. Gagliano, N. Elvassore, C. Luni, Microfluidic technology enhances the potential of human pluripotent stem cells. Biochem. Biophys. Res. Commun. 473, 683–687 (2016). https://doi.org/10.1016/j.bbrc.2015.12.058
O. Gagliano, C. Luni, W. Qin et al., Microfluidic reprogramming to pluripotency of human somatic cells. Nat. Protoc. 14, 722–737 (2019). https://doi.org/10.1038/s41596-018-0108-4
G.G. Giobbe, F. Michielin, C. Luni et al., Functional differentiation of human pluripotent stem cells on a chip. Nat. Methods 12, 637–640 (2015). https://doi.org/10.1038/nmeth.3411
R. Gómez-Sjöberg, A.A. Leyrat, D.M. Pirone et al., Versatile, fully automated, microfluidic cell culture system. Anal. Chem. 79, 8557–8563 (2007). https://doi.org/10.1021/ac071311w
J. Guild, A. Haque, P. Gheibi et al., Embryonic stem cells cultured in microfluidic chambers take control of their fate by producing endogenous signals including LIF. Stem Cells 34, 1501–1512 (2016). https://doi.org/10.1002/stem.2324
S. Halldorsson, E. Lucumi, R. Gómez-Sjöberg, R.M.T. Fleming, Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 63, 218–231 (2015). https://doi.org/10.1016/j.bios.2014.07.029
S. Henke, J. Leijten, E. Kemna et al., Enzymatic crosslinking of polymer conjugates is superior over ionic or UV crosslinking for the on-chip production of cell-laden microgels. Macromol. Biosci. 16, 1524–1532 (2016). https://doi.org/10.1002/mabi.201600174
Z. Hesari, M. Soleimani, F. Atyabi et al., A hybrid microfluidic system for regulation of neural differentiation in induced pluripotent stem cells. J. Biomed. Mater. Res. Part A 104, 1534–1543 (2016). https://doi.org/10.1002/jbm.a.35689
Z. Hua, Y. Xia, O. Srivannavit et al., A versatile microreactor platform featuring a chemical-resistant microvalve array for addressable multiplex syntheses and assays. J. Micromech. Microeng. 16, 1433–1443 (2006). https://doi.org/10.1088/0960-1317/16/8/001
D. Huh, G.A. Hamilton, D.E. Ingber, From 3D cell culture to organs-on-chips. Trends Cell. Biol. 21, 745–754 (2011). https://doi.org/10.1016/j.tcb.2011.09.005
J. Kajtez, S. Buchmann, S. Vasudevan et al., 3D-printed soft lithography for complex compartmentalized microfluidic neural devices. Adv. Sci. 7, 2001150 (2020). https://doi.org/10.1002/advs.202001150
K.I. Kamei, S. Guo, Z.T.F. Yu et al., An integrated microfluidic culture device for quantitative analysis of human embryonic stem cells. Lab Chip 9, 555–563 (2009). https://doi.org/10.1039/b809105f
K.I. Kamei, Y. Mashimo, M. Yoshioka et al., Microfluidic-nanofiber hybrid array for screening of cellular microenvironments. Small 13, 1603104 (2017). https://doi.org/10.1002/smll.201603104
K.D.H. Kshitiz, D.J. Beebe, A. Levchenko, Micro- and nanoengineering for stem cell biology: The promise with a caution. Trends Biotechnol. 29, 399–408 (2011). https://doi.org/10.1016/j.tibtech.2011.03.006
J.M. Lee, J.E. Kim, E. Kang et al., An integrated microfluidic culture device to regulate endothelial cell differentiation from embryonic stem cells. Electrophoresis 32, 3133–3137 (2011). https://doi.org/10.1002/elps.201100161
K.M.M. Loh, A. Chen, P.W.W. Koh et al., Mapping the pairwise choices leading from pluripotency to human bone, heart, and other mesoderm cell types. Cell 166, 451–467 (2016). https://doi.org/10.1016/j.cell.2016.06.011
C. Luni, S. Giulitti, E. Serena et al., High-efficiency cellular reprogramming with microfluidics. Nat. Methods 13, 446–452 (2016). https://doi.org/10.1038/nmeth.3832
C. Luni, E. Serena, N. Elvassore, Human-on-chip for therapy development and fundamental science. Curr. Opin. Biotechnol. 25, 45–50 (2014). https://doi.org/10.1016/j.copbio.2013.08.015
H. Makamba, J.H. Kim, K. Lim et al., Surface modification of poly(dimethylsiloxane) microchannels. Electrophoresis 24, 3607–3619 (2003). https://doi.org/10.1002/elps.200305627
J. Melin, S.R. Quake, Microfluidic large-scale integration: The evolution of design rules for biological automation. Annu. Rev. Biophys. Biomol. Struct. 36, 213–231 (2007). https://doi.org/10.1146/annurev.biophys.36.040306.132646
E.S. Ng, R. Davis, E.G. Stanley, A.G. Elefanty, A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat. Protoc. 3, 768–776 (2008). https://doi.org/10.1038/nprot.2008.42
D. Park, J. Lim, J.Y. Park, S.-H. Lee, Concise review: stem cell microenvironment on a chip: current technologies for tissue engineering and stem cell biology. Stem Cells Transl. Med. 4, 1352–1368 (2015). https://doi.org/10.5966/sctm.2015-0095
L. Przybyla, J. Voldman, Probing embryonic stem cell autocrine and paracrine signaling using microfluidics. Annu. Rev. Anal. Chem. 5, 293–315 (2012a). https://doi.org/10.1146/annurev-anchem-062011-143122
L.M. Przybyla, J. Voldman, Attenuation of extrinsic signaling reveals the importance of matrix remodeling on maintenance of embryonic stem cell self-renewal. Proc. Natl. Acad. Sci. U. S. A. 109, 835–840 (2012b). https://doi.org/10.1073/pnas.1103100109
H.s. Rho, Y. Yang, H.-W. Veltkamp, H. Gardeniers, Direct delivery of reagents from a pipette tip to a PDMS microfluidic device. Chips and Tips (2015), https://blogs.rsc.org/chipsandtips/2015/10/09/. Accessed 2 June 2020
D.J. Sikorski, N.J. Caron, M. Vaninsberghe et al., Clonal analysis of individual human embryonic stem cell differentiation patterns in microfluidic cultures. Biotechnol. J. 10, 1546–1554 (2015). https://doi.org/10.1002/biot.201500035
S. Stefanovic, N. Abboud, S. Désilets et al., Interplay of Oct4 with Sox2 and Sox17: A molecular switch from stem cell pluripotency to specifying a cardiac fate. J. Cell Biol. 186, 665–673 (2009). https://doi.org/10.1083/jcb.200901040
T. Thorsen, S.J. Maerkl, S.R. Quake, Microfluidic large-scale integration. Science 80(298), 580–584 (2002). https://doi.org/10.1126/science.1076996
D. Titmarsh, A. Hidalgo, J. Turner et al., Optimization of flowrate for expansion of human embryonic stem cells in perfusion microbioreactors. Biotechnol. Bioeng. 108, 2894–2904 (2011). https://doi.org/10.1002/bit.23260
D.M. Titmarsh, C.L.L. Tan, N.R. Glass et al., Microfluidic screening reveals heparan sulfate enhances human mesenchymal stem cell growth by modulating fibroblast growth factor-2 transport. Stem Cells Transl. Med. 6, 1178–1190 (2017). https://doi.org/10.1002/sctm.16-0343
M.A. Unger, H.P. Chou, T. Thorsen et al., Monolithic microfabricated valves and pumps by multilayer soft lithography. Science 80(288), 113–116 (2000). https://doi.org/10.1126/science.288.5463.113
A. Van Den Berg, C.L. Mummery, R. Passier, A.D. Van der Meer, Personalised organs-on-chips: functional testing for precision medicine. Lab Chip 19, 198–205 (2019). https://doi.org/10.1039/c8lc00827b
A.D. Van Der Meer, A. Van Den Berg, Organs-on-chips: Breaking the in vitro impasse. Integr. Biol. 4, 461–470 (2012). https://doi.org/10.1039/c2ib00176d
B.J. van Meer, H. de Vries, K.S.A. Firth et al., Small molecule absorption by PDMS in the context of drug response bioassays. Biochem. Biophys. Res. Commun. 482, 323–328 (2017). https://doi.org/10.1016/j.bbrc.2016.11.062
A.R. Vollertsen, D. de Boer, S. Dekker et al., Modular operation of microfluidic chips for highly parallelized cell culture and liquid dosing via a fluidic circuit board. Microsystems Nanoeng. 6, 107 (2020). https://doi.org/10.1038/s41378-020-00216-z
X. Wu, N. Schneider, A. Platen et al., In situ characterization of the mTORC1 during adipogenesis of human adult stem cells on chip. Proc. Natl. Acad. Sci. U. S. A. 113, E4143–E4150 (2016). https://doi.org/10.1073/pnas.1601207113
X. Yin, B.E. Mead, H. Safaee et al., Engineering stem cell organoids. Cell Stem Cell 18, 25–38 (2016). https://doi.org/10.1016/j.stem.2015.12.005
R. Yoshimitsu, K. Hattori, S. Sugiura et al., Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions. Biotechnol. Bioeng. 111, 937–947 (2014). https://doi.org/10.1002/bit.25150
D. Zeineddine, E. Papadimou, K. Chebli et al., Oct-3/4 dose dependently regulates specification of embryonic stem cells toward a cardiac lineage and early heart development. Dev. Cell 11, 535–546 (2006). https://doi.org/10.1016/j.devcel.2006.07.013
C. Zhang, H.L. Tu, G. Jia et al., Ultra-multiplexed analysis of single-cell dynamics reveals logic rules in differentiation. Sci. Adv. 5, 1–11 (2019). https://doi.org/10.1126/sciadv.aav7959_rfseq1
J. Zhang, X. Wei, R. Zeng et al., Stem cell culture and differentiation in microfluidic devices toward organ-on-a-chip. Futur. Sci. OA 3, FSO187 (2017). https://doi.org/10.4155/fsoa-2016-0091