Highly flexible radial tandem junction thin film solar cells with excellent power-to-weight ratio

Nano Energy - Tập 86 - Trang 106121 - 2021
Shaobo Zhang1, Ting Zhang1, Zongguang Liu1, Junzhuan Wang1, Linwei Yu1, Jun Xu1, Kunji Chen1, Pere Roca i Cabarrocas2
1National Laboratory of Solid State Microstructures/School of Electronics Science and Engineering/Collaborative Innovation Center of Advanced Microstructures, Nanjing University, 210093 Nanjing, PR China
2LPICM, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, 91128, Palaiseau, France

Tài liệu tham khảo

Kim, 2013, Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology, Sol. Energy Mater. Sol. Cells, 119, 26, 10.1016/j.solmat.2013.04.016 Okamoto, 2001, Towards large-area, high-efficiency a-Si/a-SiGe tandem solar cells, Sol. Energy Mater. Sol. Cells, 66, 85, 10.1016/S0927-0248(00)00161-6 Yu, 2012, Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells, Nano Lett., 12, 4153, 10.1021/nl3017187 Liu, 2015, Fill factor improvement in PIN type hydrogenated amorphous silicon germanium thin film solar cells: omnipotent N type μc-SiO:H layer, Sol. Energy Mater. Sol. Cells, 140, 450, 10.1016/j.solmat.2015.05.008 Sun, 2018, Firmly standing three-dimensional radial junctions on soft aluminum foils enable extremely low cost flexible thin film solar cells with very high power-to-weight performance, Nano Energy, 53, 83, 10.1016/j.nanoen.2018.08.038 Xiao, 2015, Performance optimization of flexible a-Si:H solar cells with nanotextured plasmonic substrate by tuning the thickness of oxide spacer layer, Nano Energy, 11, 78, 10.1016/j.nanoen.2014.10.006 Yang, 2018, Flexible semi-transparent a-Si:H pin solar cells for functional energy-harvesting applications, Mater. Sci. Eng.: B, 229, 1, 10.1016/j.mseb.2017.12.005 Yang, 2017, Biomimetic radial tandem junction photodetector with natural RGB color discrimination capability, Adv. Opt. Mater., 5, 10.1002/adom.201700390 Liu, 2019, Photoelectric cardiac pacing by flexible and degradable amorphous Si radial junction stimulators, Adv. Healthc. Mater., 9 Meillaud, 2006, Efficiency limits for single-junction and tandem solar cells, Sol. Energy Mater. Sol. Cells, 90, 2952, 10.1016/j.solmat.2006.06.002 Keppner, 1999, Microcrystalline silicon and micromorph tandem solar cells, Appl. Phys. A Mater. Sci. Process., 69, 169, 10.1007/s003390050987 Tsai, 2018, Tandem amorphous/microcrystalline silicon thin-film solar modules: developments of novel technologies, Sol. Energy, 170, 419, 10.1016/j.solener.2018.05.060 Söderström, 2009, Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells, Appl. Phys. Lett., 94, 10.1063/1.3079414 Jung, 2017, Backside etching process for enhancing the light trapping capacity and electrical properties of micromorph tandem solar cells, J. Nanosci. Nanotechnol., 17, 8158, 10.1166/jnn.2017.15121 Bai, 2014, J. Power Sources, 266, 138, 10.1016/j.jpowsour.2014.04.150 Liang, 2014, Applications of µc-SiOx:H as integrated n-layer and back transparent conductive oxide for a-Si:H/µc-Si:H tandem cells, Jpn. J. Appl. Phys., 53, 05FV08, 10.7567/JJAP.53.05FV08 Terakawa, 2013, Review of thin-film silicon deposition techniques for high-efficiency solar cells developed at Panasonic/Sanyo, Sol. Energy Mater. Sol. Cells, 119, 204, 10.1016/j.solmat.2013.06.044 Gharghi, 2012, Heterojunction silicon microwire solar cells, Nano Lett., 12, 6278, 10.1021/nl3033813 Fan, 2010, Ordered arrays of dual-diameter nanopillars for maximized optical absorption, Nano Lett., 10, 3823, 10.1021/nl1010788 Peng, 2011, Silicon nanowires for photovoltaic solar energy conversion, Adv. Mater., 23, 198, 10.1002/adma.201002410 Sivakov, 2009, Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters, Nano Lett., 9, 1549, 10.1021/nl803641f Wang, 2010, Vertically arrayed Si nanowire/nanorod-based core-shell p-n junction solar cells, J. Appl. Phys., 108, 10.1063/1.3520217 Kelzenberg, 2010, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nat. Mater., 9, 239, 10.1038/nmat2635 Zhang, 2019, Coupled boron-doping and geometry control of tin-catalyzed silicon nanowires for high performance radial junction photovoltaics, Opt. Express, 27, 37248, 10.1364/OE.27.037248 Yu, 2015, Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells, Appl. Phys. Lett., 107, 10.1063/1.4933274 Misra, 2013, Readability analysis of healthcare-oriented education resources from the American Academy of Facial Plastic and Reconstructive Surgery, Laryngoscope, 123, 10.1002/lary.23574 Misra, 2014, A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells, J. Phys. D Appl. Phys., 47, 10.1088/0022-3727/47/39/393001 Yu, 2014, Understanding light harvesting in radial junction amorphous silicon thin film solar cells, Sci. Rep., 4, 4357, 10.1038/srep04357 Cho, 2013, Prog. Photovolt. Res. Appl., 21, 77, 10.1002/pip.1245 Roca i Cabarrocas, 2000, Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films, J. Noncryst. Solids, 266–269, 31, 10.1016/S0022-3093(99)00714-0 Kalache, 2002, Ion bombardment effects on the microcrystalline silicon growth mechanisms and structure, J. Noncryst. Solids, 299–302, 63, 10.1016/S0022-3093(01)00995-4 Veldhuizen, 2016, Ultrathin tandem solar cells on nanorod morphology with 35-nm thick hydrogenated amorphous silicon germanium bottom cell absorber layer, Sol. Energy Mater. Sol. Cells, 158, 209, 10.1016/j.solmat.2016.03.041 Kang, 2012, Effect of TiO2 antireflection layer with various conductivities and refractive indices on performance of amorphous silicon/amorphous silicon germanium tandem solar cells, Jpn. J. Appl. Phys., 51, 10NB10, 10.1143/JJAP.51.10NB10 Maruyama, 2002, Toward stabilized 10% efficiency of large-area (>5000cm2) a-Si/a-SiGe tandem solar cells using high-rate deposition, Sol. Energy Mater. Sol. Cells, 74, 339, 10.1016/S0927-0248(02)00093-4 Fan, 2010, High efficiency silicon–germanium thin film solar cells using graded absorber layer, Sol. Energy Mater. Sol. Cells, 94, 1300, 10.1016/j.solmat.2010.03.006 Guha, 1989, Band‐gap profiling for improving the efficiency of amorphous silicon alloy solar cells, Appl. Phys. Lett., 54, 2330, 10.1063/1.101118 Yang, 1997, Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies, Appl. Phys. Lett., 70, 2975, 10.1063/1.118761 Schüttauf, 2015, Amorphous silicon–germanium for triple and quadruple junction thin-film silicon based solar cells, Sol. Energy Mater. Sol. Cells, 133, 163, 10.1016/j.solmat.2014.11.006 S. Misra, Thesis, 2015. http://www.theses.fr/2015EPXX0062. Xu, 2018, Recent advances in biointegrated optoelectronic devices, Adv. Mater., 30, 10.1002/adma.201800156 Lou, 2017, Recent progress of self-powered sensing systems for wearable electronics, Small, 13, 10.1002/smll.201701791 Hashemi, 2020, Recent progress in flexible–wearable solar cells for self-powered electronic devices, Energy Environ. Sci., 13, 685, 10.1039/C9EE03046H Chang, 2012, High efficiency a-Si:H/a-Si:H solar cell with a tunnel recombination junction and a n-type μc-Si:H layer, Thin Solid Films, 520, 3684, 10.1016/j.tsf.2011.12.083 Inthisang, 2015, High efficiency a-Si:H/a-SiGe:H tandem solar cells fabricated with the combination of V- and U-shaped band gap profiling techniques, Jpn. J. Appl. Phys., 54, 10.7567/JJAP.54.08KB08 Hou, 2011, High-efficiency and highly stable a-Si:H solar cells deposited at high rate (8 Å/s) with disilane grading process, J. Vac. Sci. Technol. A Vac. Surf. Films, 29, 10.1116/1.3630052 Gupta, 2004, Role of H in hot-wire deposited a-Si:H films revisited: optical characterization and modeling, J. Non-Cryst. Solids, 343, 131, 10.1016/j.jnoncrysol.2004.07.008 Gupta, 2005, Interplay of hydrogen and deposition temperature in optical properties of hot-wire deposited a‐Si:H Films:Ex situspectroscopic ellipsometry studies, J. Vac. Sci. Technol. A Vac. Surf. Films, 23, 1668, 10.1116/1.2056552 Nakamura, 1981, Amorphous SiGe: H for high performance solar cells, Jpn. J. Appl. Phys., 20, 291, 10.7567/JJAPS.20S1.291 Hegedus, 1992, Midgap states ina‐Si:H anda‐SiGe:Hp‐i‐nsolar cells and Schottky junctions by capacitance techniques, J. Appl. Phys., 71, 5941, 10.1063/1.350444 Veldhuizen, 2015, Optimization of hydrogenated amorphous silicon germanium thin films and solar cells deposited by hot wire chemical vapor deposition, Thin Solid Films, 595, 226, 10.1016/j.tsf.2015.05.055 Cai, 2009, Study on diffusion barrier layer of silicon-based thin-film solar cells on polyimide substrate, Sol. Energy Mater. Sol. Cells, 93, 1959, 10.1016/j.solmat.2009.07.011 Nishiwaki, 1995, Development of an ultralight, flexible a-Si solar cell submodule, Sol. Energy Mater. Sol. Cells, 37, 295, 10.1016/0927-0248(95)00022-4 Kishi, 1992, A New Type of ultralight flexible a-Si Solar Cell, Jpn. J. Appl. Phys., 31, 12, 10.1143/JJAP.31.12 Pimentel, 2017, 3D ZnO/Ag surface-enhanced raman scattering on disposable and flexible cardboard platforms, Materials, 10, 1351, 10.3390/ma10121351 Misra, 2015, New approaches to improve the performance of thin-film radial junction solar cells built over silicon nanowire arrays, IEEE J. Photovolt., 5, 40, 10.1109/JPHOTOV.2014.2366688 Qian, 2015, Full potential of radial junction Si thin film solar cells with advanced junction materials and design, Appl. Phys. Lett., 107, 10.1063/1.4926991 Chapa, 2019, All-thin-film perovskite/C–Si four-terminal tandems: interlayer and intermediate contacts optimization, ACS Appl. Energy Mater., 2, 3979, 10.1021/acsaem.9b00354 Mendes, 2018, Optimal-enhanced solar cell ultra-thinning with broadband nanophotonic light capture, iScience, 3, 238, 10.1016/j.isci.2018.04.018