Highly flexible radial tandem junction thin film solar cells with excellent power-to-weight ratio
Tài liệu tham khảo
Kim, 2013, Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology, Sol. Energy Mater. Sol. Cells, 119, 26, 10.1016/j.solmat.2013.04.016
Okamoto, 2001, Towards large-area, high-efficiency a-Si/a-SiGe tandem solar cells, Sol. Energy Mater. Sol. Cells, 66, 85, 10.1016/S0927-0248(00)00161-6
Yu, 2012, Bismuth-catalyzed and doped silicon nanowires for one-pump-down fabrication of radial junction solar cells, Nano Lett., 12, 4153, 10.1021/nl3017187
Liu, 2015, Fill factor improvement in PIN type hydrogenated amorphous silicon germanium thin film solar cells: omnipotent N type μc-SiO:H layer, Sol. Energy Mater. Sol. Cells, 140, 450, 10.1016/j.solmat.2015.05.008
Sun, 2018, Firmly standing three-dimensional radial junctions on soft aluminum foils enable extremely low cost flexible thin film solar cells with very high power-to-weight performance, Nano Energy, 53, 83, 10.1016/j.nanoen.2018.08.038
Xiao, 2015, Performance optimization of flexible a-Si:H solar cells with nanotextured plasmonic substrate by tuning the thickness of oxide spacer layer, Nano Energy, 11, 78, 10.1016/j.nanoen.2014.10.006
Yang, 2018, Flexible semi-transparent a-Si:H pin solar cells for functional energy-harvesting applications, Mater. Sci. Eng.: B, 229, 1, 10.1016/j.mseb.2017.12.005
Yang, 2017, Biomimetic radial tandem junction photodetector with natural RGB color discrimination capability, Adv. Opt. Mater., 5, 10.1002/adom.201700390
Liu, 2019, Photoelectric cardiac pacing by flexible and degradable amorphous Si radial junction stimulators, Adv. Healthc. Mater., 9
Meillaud, 2006, Efficiency limits for single-junction and tandem solar cells, Sol. Energy Mater. Sol. Cells, 90, 2952, 10.1016/j.solmat.2006.06.002
Keppner, 1999, Microcrystalline silicon and micromorph tandem solar cells, Appl. Phys. A Mater. Sci. Process., 69, 169, 10.1007/s003390050987
Tsai, 2018, Tandem amorphous/microcrystalline silicon thin-film solar modules: developments of novel technologies, Sol. Energy, 170, 419, 10.1016/j.solener.2018.05.060
Söderström, 2009, Asymmetric intermediate reflector for tandem micromorph thin film silicon solar cells, Appl. Phys. Lett., 94, 10.1063/1.3079414
Jung, 2017, Backside etching process for enhancing the light trapping capacity and electrical properties of micromorph tandem solar cells, J. Nanosci. Nanotechnol., 17, 8158, 10.1166/jnn.2017.15121
Bai, 2014, J. Power Sources, 266, 138, 10.1016/j.jpowsour.2014.04.150
Liang, 2014, Applications of µc-SiOx:H as integrated n-layer and back transparent conductive oxide for a-Si:H/µc-Si:H tandem cells, Jpn. J. Appl. Phys., 53, 05FV08, 10.7567/JJAP.53.05FV08
Terakawa, 2013, Review of thin-film silicon deposition techniques for high-efficiency solar cells developed at Panasonic/Sanyo, Sol. Energy Mater. Sol. Cells, 119, 204, 10.1016/j.solmat.2013.06.044
Gharghi, 2012, Heterojunction silicon microwire solar cells, Nano Lett., 12, 6278, 10.1021/nl3033813
Fan, 2010, Ordered arrays of dual-diameter nanopillars for maximized optical absorption, Nano Lett., 10, 3823, 10.1021/nl1010788
Peng, 2011, Silicon nanowires for photovoltaic solar energy conversion, Adv. Mater., 23, 198, 10.1002/adma.201002410
Sivakov, 2009, Silicon nanowire-based solar cells on glass: synthesis, optical properties, and cell parameters, Nano Lett., 9, 1549, 10.1021/nl803641f
Wang, 2010, Vertically arrayed Si nanowire/nanorod-based core-shell p-n junction solar cells, J. Appl. Phys., 108, 10.1063/1.3520217
Kelzenberg, 2010, Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications, Nat. Mater., 9, 239, 10.1038/nmat2635
Zhang, 2019, Coupled boron-doping and geometry control of tin-catalyzed silicon nanowires for high performance radial junction photovoltaics, Opt. Express, 27, 37248, 10.1364/OE.27.037248
Yu, 2015, Bi-Sn alloy catalyst for simultaneous morphology and doping control of silicon nanowires in radial junction solar cells, Appl. Phys. Lett., 107, 10.1063/1.4933274
Misra, 2013, Readability analysis of healthcare-oriented education resources from the American Academy of Facial Plastic and Reconstructive Surgery, Laryngoscope, 123, 10.1002/lary.23574
Misra, 2014, A review on plasma-assisted VLS synthesis of silicon nanowires and radial junction solar cells, J. Phys. D Appl. Phys., 47, 10.1088/0022-3727/47/39/393001
Yu, 2014, Understanding light harvesting in radial junction amorphous silicon thin film solar cells, Sci. Rep., 4, 4357, 10.1038/srep04357
Cho, 2013, Prog. Photovolt. Res. Appl., 21, 77, 10.1002/pip.1245
Roca i Cabarrocas, 2000, Plasma enhanced chemical vapor deposition of amorphous, polymorphous and microcrystalline silicon films, J. Noncryst. Solids, 266–269, 31, 10.1016/S0022-3093(99)00714-0
Kalache, 2002, Ion bombardment effects on the microcrystalline silicon growth mechanisms and structure, J. Noncryst. Solids, 299–302, 63, 10.1016/S0022-3093(01)00995-4
Veldhuizen, 2016, Ultrathin tandem solar cells on nanorod morphology with 35-nm thick hydrogenated amorphous silicon germanium bottom cell absorber layer, Sol. Energy Mater. Sol. Cells, 158, 209, 10.1016/j.solmat.2016.03.041
Kang, 2012, Effect of TiO2 antireflection layer with various conductivities and refractive indices on performance of amorphous silicon/amorphous silicon germanium tandem solar cells, Jpn. J. Appl. Phys., 51, 10NB10, 10.1143/JJAP.51.10NB10
Maruyama, 2002, Toward stabilized 10% efficiency of large-area (>5000cm2) a-Si/a-SiGe tandem solar cells using high-rate deposition, Sol. Energy Mater. Sol. Cells, 74, 339, 10.1016/S0927-0248(02)00093-4
Fan, 2010, High efficiency silicon–germanium thin film solar cells using graded absorber layer, Sol. Energy Mater. Sol. Cells, 94, 1300, 10.1016/j.solmat.2010.03.006
Guha, 1989, Band‐gap profiling for improving the efficiency of amorphous silicon alloy solar cells, Appl. Phys. Lett., 54, 2330, 10.1063/1.101118
Yang, 1997, Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies, Appl. Phys. Lett., 70, 2975, 10.1063/1.118761
Schüttauf, 2015, Amorphous silicon–germanium for triple and quadruple junction thin-film silicon based solar cells, Sol. Energy Mater. Sol. Cells, 133, 163, 10.1016/j.solmat.2014.11.006
S. Misra, Thesis, 2015. http://www.theses.fr/2015EPXX0062.
Xu, 2018, Recent advances in biointegrated optoelectronic devices, Adv. Mater., 30, 10.1002/adma.201800156
Lou, 2017, Recent progress of self-powered sensing systems for wearable electronics, Small, 13, 10.1002/smll.201701791
Hashemi, 2020, Recent progress in flexible–wearable solar cells for self-powered electronic devices, Energy Environ. Sci., 13, 685, 10.1039/C9EE03046H
Chang, 2012, High efficiency a-Si:H/a-Si:H solar cell with a tunnel recombination junction and a n-type μc-Si:H layer, Thin Solid Films, 520, 3684, 10.1016/j.tsf.2011.12.083
Inthisang, 2015, High efficiency a-Si:H/a-SiGe:H tandem solar cells fabricated with the combination of V- and U-shaped band gap profiling techniques, Jpn. J. Appl. Phys., 54, 10.7567/JJAP.54.08KB08
Hou, 2011, High-efficiency and highly stable a-Si:H solar cells deposited at high rate (8 Å/s) with disilane grading process, J. Vac. Sci. Technol. A Vac. Surf. Films, 29, 10.1116/1.3630052
Gupta, 2004, Role of H in hot-wire deposited a-Si:H films revisited: optical characterization and modeling, J. Non-Cryst. Solids, 343, 131, 10.1016/j.jnoncrysol.2004.07.008
Gupta, 2005, Interplay of hydrogen and deposition temperature in optical properties of hot-wire deposited a‐Si:H Films:Ex situspectroscopic ellipsometry studies, J. Vac. Sci. Technol. A Vac. Surf. Films, 23, 1668, 10.1116/1.2056552
Nakamura, 1981, Amorphous SiGe: H for high performance solar cells, Jpn. J. Appl. Phys., 20, 291, 10.7567/JJAPS.20S1.291
Hegedus, 1992, Midgap states ina‐Si:H anda‐SiGe:Hp‐i‐nsolar cells and Schottky junctions by capacitance techniques, J. Appl. Phys., 71, 5941, 10.1063/1.350444
Veldhuizen, 2015, Optimization of hydrogenated amorphous silicon germanium thin films and solar cells deposited by hot wire chemical vapor deposition, Thin Solid Films, 595, 226, 10.1016/j.tsf.2015.05.055
Cai, 2009, Study on diffusion barrier layer of silicon-based thin-film solar cells on polyimide substrate, Sol. Energy Mater. Sol. Cells, 93, 1959, 10.1016/j.solmat.2009.07.011
Nishiwaki, 1995, Development of an ultralight, flexible a-Si solar cell submodule, Sol. Energy Mater. Sol. Cells, 37, 295, 10.1016/0927-0248(95)00022-4
Kishi, 1992, A New Type of ultralight flexible a-Si Solar Cell, Jpn. J. Appl. Phys., 31, 12, 10.1143/JJAP.31.12
Pimentel, 2017, 3D ZnO/Ag surface-enhanced raman scattering on disposable and flexible cardboard platforms, Materials, 10, 1351, 10.3390/ma10121351
Misra, 2015, New approaches to improve the performance of thin-film radial junction solar cells built over silicon nanowire arrays, IEEE J. Photovolt., 5, 40, 10.1109/JPHOTOV.2014.2366688
Qian, 2015, Full potential of radial junction Si thin film solar cells with advanced junction materials and design, Appl. Phys. Lett., 107, 10.1063/1.4926991
Chapa, 2019, All-thin-film perovskite/C–Si four-terminal tandems: interlayer and intermediate contacts optimization, ACS Appl. Energy Mater., 2, 3979, 10.1021/acsaem.9b00354
Mendes, 2018, Optimal-enhanced solar cell ultra-thinning with broadband nanophotonic light capture, iScience, 3, 238, 10.1016/j.isci.2018.04.018