Highly efficient solar vapour generation via hierarchically nanostructured gels

Nature Nanotechnology - Tập 13 Số 6 - Trang 489-495 - 2018
Fei Zhao1, Xingyi Zhou1, Ye Shi1, Xin Qian2, Megan Alexander1, Xinpeng Zhao2, Samantha Mendez1, Ronggui Yang2, Liangti Qu3, Guihua Yu1
1Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
2Department of Mechanical Engineering, University of Colorado, Boulder, CO USA
3Key Laboratory of Photoelectronic/Eletrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Lewis, N. S. Research opportunities to advance solar energy utilization. Science 351, aad1920 (2016).

Chen, J. et al. Micro-cable structured textile for simultaneously harvesting solar and mechanical energy. Nat. Energy 1, 16138 (2016).

Wallace, G. G. et al. Nanoelectrodes: energy conversion and storage. Mater. Today 12, 20–27 (2009).

Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301310 (2008).

Narayan, G. P. et al. The potential of solar-driven humidification–dehumidification desalination for small-scale decentralized water production. Renew. Sustain. Energy Rev. 14, 11871201 (2010).

Williams, A. Solar powered water desalination heats up in Chile. Water Wastewat. Int. 28, 24–28 (2013).

Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712717 (2011).

Li, C., Goswami, Y. & Stefanakos, E. Solar assisted sea water desalination: a review. Renew. Sustain. Energy Rev. 19, 136163 (2013).

Jean, J. et al. Pathways for solar photovoltaics. Energy Environ. Sci. 8, 1200–1219 (2015).

Romano, M. S. et al. Carbon nanotube-reduced graphene oxide composites for thermal energy harvesting applications. Adv. Mater. 25, 6602–6606 (2013).

Fraunhofer Institute for Solar Energy Systems. Photovoltaics Report (2014); https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf

IPCC. Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer L. A.) (IPCC, 2015); https://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_FINAL_full_wcover.pdf

Wang, J. et al. High-performance photothermal conversion of narrow-bandgap Ti2O3 nanoparticles. Adv. Mater. 29, 1603730 (2017).

Hu, X. et al. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Adv. Mater. 29, 1604031 (2017).

Ito, Y. et al. Multifunctional porous graphene for high-efficiency steam generation by heat localization. Adv. Mater. 27, 4302–4307 (2015).

Zhang, L., Tang, B., Wu, J., Li, R. & Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 27, 4889–4894 (2015).

Liu, C. et al. High-performance large-scale solar steam generation with nanolayers of reusable biomimetic nanoparticles. Adv. Sustain. Syst. 1, 1600013 (2017).

Zhou, L. et al. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nat. Photon. 10, 393–398 (2016).

Bae, K. et al. Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation. Nat. Commun. 6, 10103 (2015).

Zhou, L. et al. Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation. Sci. Adv. 2, e1501227 (2016).

Ni, G. et al. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 1, 16126 (2016).

Liu, Z. et al. Extremely cost-effective and efficient solar vapor generation under nonconcentrated illumination using thermally isolated black paper. Glob. Chall. 1, 1600003 (2017).

Hadi, G. et al. Solar steam generation by heat localization. Nat. Commun. 5, 5449 (2014).

Li, X. et al. Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. Proc. Natl Acad. Sci. USA 113, 13953–13958 (2016).

Zielinski, M. S. et al. Hollow mesoporous plasmonic nanoshells for enhanced solar vapor generation. Nano Lett. 16, 2159–2167 (2016).

Neumann, O. et al. Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles. Proc. Natl Acad. Sci. USA 110, 11677–11681 (2013).

Phelan, P., Taylor, R., Adrian, R., Prasher, R. & Otanicar, T. in Nanoparticle Heat Transfer Fluid Flow (eds Minkowycz, W. J., Sparrow, E. M. & Abraham, J.) 123–142 (CRC, Boca Raton, FL, 2012).

Zhao, F., Shi, Y., Pan, L. & Yu, G. Multifunctional nanostructured conductive polymer gels: synthesis, properties, and applications. Acc. Chem. Res. 50, 1734–1743 (2017).

Bellich, B., Borgogna, M., Cok, M. & Cesàro, A.Water evaporation from gel beads. J. Therm. Anal. Calorim. 103, 81–88 (2011).

Ma, C., Shi, Y., Pena, D. A., Peng, L. & Yu, G. Thermally responsive hydrogel blends: a general drug carrier model for controlled drug release. Angew. Chem. Int. Ed. 127, 7484–7488 (2015).

Shi, Y., Ma, C., Peng, L. & Yu, G. Conductive “smart” hybrid hydrogels with PNIPAM and nanostructured conductive polymers. Adv. Funct. Mater. 25, 1219–1225 (2015).

Jin, L. & Bai, R. Mechanisms of lead adsorption on chitosan/PVA hydrogel beads. Langmuir 18, 9765–9770 (2002).

Wang, Y. et al. Dopant-enabled supramolecular approach for controlled synthesis of nanostructured conductive polymer hydrogels. Nano Lett. 15, 7736–7741 (2015).

Mansur, H. S., Oréfice, R. L. & Mansur, A. A. Characterization of poly (vinyl alcohol)/poly (ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer 45, 7193–7202 (2004).

Bairi, P., Roy, B., Routh, P., Sen, K. & Nandi, A. K. Self-sustaining, fluorescent and semi-conducting co-assembled organogel of Fmoc protected phenylalanine with aromatic amines. Soft Matter 8, 7436–7445 (2012).

Sun, G., Li, Z., Liang, R., Weng, L. T. & Zhang, L.Super stretchable hydrogel achieved by non-aggregated spherulites with diameters < 5nm. Nat. Commun. 7, 12095 (2016).

Miyazaki, M. et al. Infrared spectroscopic evidence for protonated water clusters forming nanoscale cages. Science 304, 1129–1137 (2004).

Fujii, A. & Kenta, M. Infrared spectroscopic studies on hydrogen-bonded water networks in gas phase clusters. Int. Rev. Phys. Chem. 32, 266–307 (2013).

Liu, Y. et al. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 27, 2768–2774 (2015).

Birgersson, E., Li, H. & Wu, S. Transient analysis of temperature-sensitive neutral hydrogels. J. Mech. Phys. Solids 56, 444–466 (2008).

World Ocean Database 2013 (National Oceanic and Atmospheric Administration, accessed September 2013); https://www.nodc.noaa.gov/OC5/WOD13/

World Health Organization (WHO). Safe Drinking-Water from Desalination (WHO, 2011); http://apps.who.int/iris/bitstream/10665/70621/1/WHO_HSE_WSH_11.03_eng.pdf

Surwade, S. P. et al. Water desalination using nanoporous single-layer graphene. Nat. Nanotech. 10, 459–464 (2015).