Các tế bào mặt phẳng perovskite mặt trời hiệu quả cao thông qua kỹ thuật căn chỉnh năng lượng

Energy and Environmental Science - Tập 8 Số 10 - Trang 2928-2934
Juan‐Pablo Correa‐Baena1,2,3,4,5, Ludmilla Steier1,2,6,4,5, Wolfgang Tress1,2,6,4,5, Michael Saliba1,7,2,4,5, Stefanie Neutzner8,9,10,11,12, Taisuke Matsui13,14,15,16, Fabrizio Giordano1,2,6,4,5, T. Jesper Jacobsson1,2,3,4,5, Ajay Ram Srimath Kandada8,11,12,17, Shaik M. Zakeeruddin1,2,6,4,5, Annamaria Petrozza8,11,12,17, Antonio Abate1,2,6,4,5, Mohammad Khaja Nazeeruddin1,7,2,4,5, Michaël Grätzel1,2,6,4,5, Anders Hagfeldt1,2,3,4,5
1CH-1015-Lausanne
2Institute of Chemical Sciences and Engineering
3Laboratory for Photomolecular Science
4Switzerland
5École Polytechnique Fédérale de Lausanne
6Laboratory for Photonics and Interfaces
7Group for Molecular Engineering of Functional Materials
8Center for Nano Science and Technology @PoliMi, Istituto Italiano di Tecnologia, via Pascoli 70/3, 20133 Milano, Italy
9Dipartimento di Fisica
10Dipartimento di Fisica, Politecnico di Milano, piazza. L. da Vinci 32, 20133 Milano, Italy
11Istituto Italiano di Tecnologia
12Italy
13Advanced Research Division, Panasonic Corporation, 1006, (Oaza Kadoma), Kadoma City, Osaka 571-8501, Japan
14Japan
15Kadoma City
16Panasonic Corporation
17via Pascoli 70/3 20133 Milano

Tóm tắt

Các tế bào mặt phẳng perovskite mặt trời cho thấy sự không phù hợp của dải dẫn điện giữa perovskite và TiO2, nhưng không xảy ra với SnO2. Hệ thống sử dụng SnO2 đã đạt được hiệu suất chuyển đổi năng lượng trên 18%.

Từ khóa


Tài liệu tham khảo

Kagan, 1999, Science, 286, 945, 10.1126/science.286.5441.945

Kojima, 2009, J. Am. Chem. Soc., 131, 6050, 10.1021/ja809598r

Yang, 2015, Science, 348, 1234, 10.1126/science.aaa9272

Lee, 2012, Science, 338, 643, 10.1126/science.1228604

Etgar, 2012, J. Am. Chem. Soc., 134, 17396, 10.1021/ja307789s

Stranks, 2013, Science, 342, 341, 10.1126/science.1243982

Liu, 2013, Nature, 501, 395, 10.1038/nature12509

Wojciechowski, 2014, ACS Nano, 8, 12701, 10.1021/nn505723h

Wojciechowski, 2015, J. Phys. Chem. Lett., 6, 2399, 10.1021/acs.jpclett.5b00902

Zhang, 2015, Mater. Horiz., 2, 315, 10.1039/C4MH00238E

Ke, 2015, J. Am. Chem. Soc., 137, 6730, 10.1021/jacs.5b01994

Dong, 2015, J. Phys. Chem. C, 119, 10212, 10.1021/acs.jpcc.5b00541

Song, 2015, J. Mater. Chem. A, 3, 10837, 10.1039/C5TA01207D

Li, 2015, RSC Adv., 5, 28424, 10.1039/C5RA01540E

Kranz, 2015, J. Phys. Chem. Lett., 2676, 10.1021/acs.jpclett.5b01108

Miller, 2014, Phys. Chem. Chem. Phys., 16, 22122, 10.1039/C4CP03533J

Guerrero, 2014, Appl. Phys. Lett., 105, 133902, 10.1063/1.4896779

Tress, 2015, Energy Environ. Sci., 8, 995, 10.1039/C4EE03664F

Jeon, 2015, Nature, 517, 476, 10.1038/nature14133

Bender, 1989, Appl. Surf. Sci., 38, 37, 10.1016/0169-4332(89)90516-3

Xing, 2013, Science, 342, 344, 10.1126/science.1243167

Snaith, 2014, J. Phys. Chem. Lett., 5, 1511, 10.1021/jz500113x

Tao, 2015, Energy Environ. Sci., 8, 2365, 10.1039/C5EE01720C

Xing, 2015, Small, 11, 3606, 10.1002/smll.201403719

Azpiroz, 2015, Energy Environ. Sci., 8, 2118, 10.1039/C5EE01265A

Tress, 2015, Adv. Energy Mater., 5, 1400812, 10.1002/aenm.201400812

Marschall, 2014, Adv. Funct. Mater., 24, 2421, 10.1002/adfm.201303214

Docampo, 2014, Adv. Energy Mater., 4, 1400355, 10.1002/aenm.201400355

Chen, 2014, J. Am. Chem. Soc., 136, 622, 10.1021/ja411509g

Xu, 2015, Nat. Commun., 6, 7081, 10.1038/ncomms8081

Ip, 2015, Appl. Phys. Lett., 106, 143902, 10.1063/1.4917238

Wu, 2015, Adv. Energy Mater., 1500829, 10.1002/aenm.201500829

Unger, 2014, Energy Environ. Sci., 7, 3690, 10.1039/C4EE02465F

Azevedo, 2014, Energy Environ. Sci., 7, 4044, 10.1039/C4EE02160F

Abate, 2013, Phys. Chem. Chem. Phys., 15, 2572, 10.1039/c2cp44397j

Abate, 2014, Phys. Chem. Chem. Phys., 16, 1132, 10.1039/C3CP53834F