Highly efficient and stable ionic liquid-based gel electrolytes

Nanoscale - Tập 13 Số 15 - Trang 7140-7151
Pin Ma1,2,3,4,5, Yanyan Fang6,7,8,9,10, Ang Li11,12,1,13, Boxin Wen11,12,1,13, Hong‐Bo Cheng11,12,1,13, Xiaowen Zhou6,7,8,9,10, Yumeng Shi1,2,3,5,14, Hui Ying Yang4,15,16,17, Yuan Lin6,7,8,9,10
1China
2Institute of Microscale Optoelectronics
3International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
4Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore
5Shenzhen 518060
6Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
7CAS Research/Education Center for Excellence in Molecular Sciences
8Chinese Academy of sciences
9Institute of Chemistry
10Key Laboratory of Photochemistry
11Beijing 100029
12Beijing University of Chemical Technology
13College of Materials Science and Engineering, Beijing University of Chemical Technology, 15 North Third Ring Road, Beijing 100029, China
14Shenzhen University
15Singapore
16Singapore 487372
17Singapore University of Technology and Design

Tóm tắt

Stable gel electrolytes with high ionic conductivities and diffusion are developed by incorporating rich carboxylic group-modified silica nanoparticles (COOH-SiO2) into pure ionic liquid electrolytes.

Từ khóa


Tài liệu tham khảo

Pazoki, 2017, Energy Environ. Sci., 10, 672, 10.1039/C6EE02732F

Huaulmé, 2020, Nat. Energy, 5, 468, 10.1038/s41560-020-0624-7

Chen, 2019, Chem. Soc. Rev., 48, 260, 10.1039/C8CS00559A

Kweon, 2019, Adv. Mater., 31, 1804440, 10.1002/adma.201804440

Jiang, 2020, Angew. Chem., Int. Ed., 59, 9324, 10.1002/anie.202000892

Mariotti, 2020, Green Chem., 22, 7168, 10.1039/D0GC01148G

O'Regan, 1991, Nature, 353, 737, 10.1038/353737a0

Hagfeldt, 2010, Chem. Rev., 110, 6595, 10.1021/cr900356p

Ji, 2020, Adv. Energy Mater., 10, 2000124, 10.1002/aenm.202000124

Kakiage, 2015, Chem. Commun., 51, 15894, 10.1039/C5CC06759F

Wang, 2003, J. Am. Chem. Soc., 125, 1166, 10.1021/ja029294+

Chen, 2011, Adv. Mater., 23, 4199, 10.1002/adma.201101448

Santana Andrade Jr., 2017, ACS Appl. Mater. Interfaces, 9, 20454, 10.1021/acsami.7b00897

Seo, 2019, J. Mater. Chem. A, 7, 14743, 10.1039/C9TA01907C

Buraidah, 2017, Electrochim. Acta, 245, 846, 10.1016/j.electacta.2017.06.011

Karim, 2013, J. Chem., 2013, 1

Ma, 2018, Appl. Surf. Sci., 427, 458, 10.1016/j.apsusc.2017.08.018

Masud, 2020, ACS Appl. Mater. Interfaces, 12, 42067, 10.1021/acsami.0c09519

Mohmeyer, 2006, J. Mater. Chem., 16, 2978, 10.1039/B604021G

Huo, 2017, J. Power Sources, 359, 80, 10.1016/j.jpowsour.2017.04.099

Tao, 2014, J. Phys. Chem. C, 118, 16718, 10.1021/jp412717y

Chang, 2016, Electrochim. Acta, 212, 333, 10.1016/j.electacta.2016.07.009

Ma, 2018, Electrochim. Acta, 262, 197, 10.1016/j.electacta.2018.01.003

Park, 2013, Adv. Funct. Mater., 23, 26, 10.1002/adfm.201200823

Venkatesan, 2016, ACS Appl. Mater. Interfaces, 8, 24559, 10.1021/acsami.6b06429

Sun, 2019, Nat. Commun., 10, 3302, 10.1038/s41467-019-11102-2

Francis, 2020, Adv., 32, 1904205

Wang, 2018, Joule, 2, 2145, 10.1016/j.joule.2018.07.023

Yoon, 2018, Nano Lett., 18, 5752, 10.1021/acs.nanolett.8b02363

Wu, 2015, Chem. Rev., 115, 2136, 10.1021/cr400675m

Pfaffenhuber, 2013, Phys. Chem. Chem. Phys., 15, 18318, 10.1039/c3cp53124d

Santhosha, 2015, J. Phys. Chem. B, 119, 11317, 10.1021/acs.jpcb.5b03274

Ma, 2020, ACS Appl. Nano Mater., 3, 342, 10.1021/acsanm.9b01980

Neo, 2012, Electrochim. Acta, 85, 1, 10.1016/j.electacta.2012.08.041

Etgar, 2013, J. Mater. Chem. A, 1, 10142, 10.1039/c3ta11436h

Fang, 2012, Electrochem. Commun., 16, 10, 10.1016/j.elecom.2011.12.018

Ma, 2020, Electrochim. Acta, 337, 135849, 10.1016/j.electacta.2020.135849

Dimitric-Markovic, 2001, J. Serb. Chem. Soc., 66, 451, 10.2298/JSC0107451D

Bhattacharyya, 2004, Adv. Mater., 16, 811, 10.1002/adma.200306210

Li, 2019, Appl. Surf. Sci., 488, 455, 10.1016/j.apsusc.2019.05.198

Li, 2006, J. Phys. Chem. A, 110, 10805, 10.1021/jp062291p

Shirhatti, 2010, Phys. Chem. Chem. Phys., 12, 6650, 10.1039/b924288k

Singh, 2016, J. Phys. Chem. A, 120, 6274, 10.1021/acs.jpca.6b03849

He, 2013, J. Electrochem. Soc., 161, H17, 10.1149/2.061401jes

Wang, 2014, Polym. Chem., 5, 882, 10.1039/C3PY01025B

Bettucci, 2018, Phys. Chem. Chem. Phys., 20, 1276, 10.1039/C7CP07544H

Neo, 2014, J. Mater. Chem. A, 2, 9226, 10.1039/c4ta00232f

Marchezi, 2016, J. Phys. Chem. C, 120, 23368, 10.1021/acs.jpcc.6b07319

Li, 2014, J. Power Sources, 245, 468, 10.1016/j.jpowsour.2013.07.006

Afrooz, 2016, Org. Electron., 29, 57, 10.1016/j.orgel.2015.11.024

Kebede, 1999, Sol. Energy Mater. Sol. Cells, 57, 259, 10.1016/S0927-0248(98)00178-0

Yuan, 2014, J. Power Sources, 260, 225, 10.1016/j.jpowsour.2014.03.034

Kebede, 1999, Sol. Energy Mater. Sol. Cells, 57, 259, 10.1016/S0927-0248(98)00178-0

Wang, 2006, J. Phys. Chem. B, 110, 5970, 10.1021/jp057121b

Bastianini, 2014, Sol. Energy, 107, 692, 10.1016/j.solener.2014.06.014

Raja, 2011, J. Mater. Chem., 21, 7700, 10.1039/c1jm10334b

Huang, 2016, RSC Adv., 6, 79844, 10.1039/C6RA12787H

Vaghasiya, 2017, J. Mater. Chem. A, 5, 5373, 10.1039/C6TA09777D

Aono, 2018, Phys. Chem. Chem. Phys., 20, 5780, 10.1039/C7CP07387A

Zhao, 2013, Appl. Surf. Sci., 287, 8, 10.1016/j.apsusc.2013.09.017

Fu, 2015, ACS Appl. Mater. Interfaces, 7, 19431, 10.1021/acsami.5b05672

Chen, 2011, J. Mater. Chem., 21, 17511, 10.1039/c1jm12980e

Wang, 2006, J. Phys. Chem. B, 110, 25210, 10.1021/jp064256o

Fabregat-Santiago, 2007, J. Phys. Chem. C, 111, 6550, 10.1021/jp066178a

Mohanty, 2012, J. Power Sources, 218, 174, 10.1016/j.jpowsour.2012.06.080

Sarwar, 2017, Electrochim. Acta, 245, 526, 10.1016/j.electacta.2017.05.191