Highly distinct chromosomal structures in cowpea (Vigna unguiculata), as revealed by molecular cytogenetic analysis

Springer Science and Business Media LLC - Tập 24 - Trang 197-216 - 2016
Aiko Iwata-Otsubo1,2, Jer-Young Lin3,4, Navdeep Gill3,5, Scott A. Jackson1
1Center for Applied Genetic Technologies, University of Georgia, Athens, USA
2Department of Biology, University of Pennsylvania, Philadelphia, USA
3Department of Agronomy, Purdue University, West Lafayette, USA
4Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, USA
5Department of Botany, University of British Columbia, Vancouver, Canada

Tóm tắt

Cowpea (Vigna unguiculata (L.) Walp) is an important legume, particularly in developing countries. However, little is known about its genome or chromosome structure. We used molecular cytogenetics to characterize the structure of pachytene chromosomes to advance our knowledge of chromosome and genome organization of cowpea. Our data showed that cowpea has highly distinct chromosomal structures that are cytologically visible as brightly DAPI-stained heterochromatic regions. Analysis of the repetitive fraction of the cowpea genome present at centromeric and pericentromeric regions confirmed that two retrotransposons are major components of pericentromeric regions and that a 455-bp tandem repeat is found at seven out of 11 centromere pairs in cowpea. These repeats likely evolved after the divergence of cowpea from common bean and form chromosomal structure unique to cowpea. The integration of cowpea genetic and physical chromosome maps reveals potential regions of suppressed recombination due to condensed heterochromatin and a lack of pairing in a few chromosomal termini. This study provides fundamental knowledge on cowpea chromosome structure and molecular cytogenetics tools for further chromosome studies.

Tài liệu tham khảo

Ananiev EV, Phillips RL, Rines HW (1998) Chromosome-specific molecular organization of maize (Zea mays L.) centromeric regions. Proc Natl Acad Sci U S A 95:13073–13078 Armstrong SJ, Caryl AP, Jones GH, Franklin FCH (2002) Asy1, a protein required for meiotic chromosome synapsis, localizes to axis-associated chromatin in Arabidopsis and Brassica. J Cell Sci 115:3645–3655 Arumuganathan K, Earle ED (1991) Nuclear DNA content of some important plant species. Plant Mol Biol Report 9:208–218 Bao Z, Eddy SR (2002) Automated de novo identification of repeat sequence families in sequenced genomes. Genome Res 12:1269–1276 Barone A, Saccardo F (1990) Pachytene morphology of cowpea chromosomes. In: Ng NQ, Monti LM (eds) Cowpea Genet Resour. ITTA, Ibadna, pp 137–143 Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580 Chang SB, Anderson LK, Sherman JD et al (2007) Predicting and testing physical locations of genetically mapped loci on tomato pachytene chromosome 1. Genetics 176:2131–2138 Chang SB, Yang TJ, Datema E et al (2008) FISH mapping and molecular organization of the major repetitive sequences of tomato. Chromosom Res 16:919–933 Cheng Z, Buell CR, Wing RA et al (2001a) Toward a cytological characterization of the rice genome. Genome Res 11:2133–2141 Cheng ZK, Presting GG, Buell CR et al (2001b) High-resolution pachytene chromosome mapping of bacterial artificial chromosomes anchored by genetic markers reveals the centromere location and the distribution of genetic recombination along chromosome 10 of rice. Genetics 157:1749–1757 Cheng Z, Dong F, Langdon T et al (2002) Functional rice centromeres are marked by a satellite repeat and a centromere-specific retrotransposon. Plant Cell 14:1691–1704 Chodavarapu RK, Feng S, Bernatavichute YV et al (2010) Relationship between nucleosome positioning and DNA methylation. Nature 466:388–392 David P, Chen NWG, Pedrosa-Harand A et al (2009) A nomadic subtelomeric disease resistance gene cluster in common bean. Plant Physiol 151:1048–1065 de Jong H, Fransz P, Zabel P (1999) High resolution FISH in plants—techniques and applications. Trends Plant Sci 4:258–263 Dong F, Song J, Naess SK et al (2000) Development and applications of a set of chromosome-specific cytogenetic DNA markers in potato. Theor Appl Genet 101:1001–1007 Du J, Grant D, Tian Z et al (2010) SoyTEdb: a comprehensive database of transposable elements in the soybean genome. BMC Genomics 11:113 Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185 Feng Q, Zhang YJ, Hao P et al (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320 Findley SD, Cannon S, Varala K et al (2010) A fluorescence in situ hybridization system for karyotyping soybean. Genetics 185:727–744 Fonseca A, Ferreira J, dos Santos TR et al (2010) Cytogenetic map of common bean (Phaseolus vulgaris L.). Chromosom Res 18:487–502 Fonseca A, Richard MMS, Geffroy V, Pedrosa-Harand A (2014) Epigenetic analyses and the distribution of repetitive DNA and resistance genes reveal the complexity of common bean (Phaseolus vulgaris L., Fabaceae) heterochromatin. Cytogenet Genome Res 143:168–178 Fransz PF, Armstrong S, de Jong JH et al (2000) Integrated cytogenetic map of chromosome arm 4S of A. thaliana: structural organization of heterochromatic knob and centromere region. Cell 100:367–376 Fransz P, ten Hoopen R, Tessadori F (2006) Composition and formation of heterochromatin in Arabidopsis thaliana. Chromosom Res 14:71–82 Galasso I, Schmidt T, Pignone D, Heslopharrison JS (1995) The molecular cytogenetics of Vigna-unguiculata (L) Walp—the physical organization and characterization of 18s-5.8s-25s ribosomal-RNA genes, 5s ribosomal-RNA genes, telomere-like sequences, and a family of centromeric repetitive DNA sequences. Theor Appl Genet 91:928–935 Galasso I, Harrison GE, Pignone D et al (1997) The distribution and organization of Ty1-copia-like retrotransposable elements in the genome of Vigna unguiculata (L) Walp (cowpea) and its relatives. Ann Bot 80:327–333 Genome sequencing—cowpea retrieved from https://www.integratedbreeding.net/126/communities/genomics-crop-info/agricultural-genomics/genome-sequencing/cowpea. Accessed 01 Nov 2015 Gill KS, Gill BS, Endo TR, Boyko EV (1996) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012 Gill N, Findley S, Walling JG et al (2009) Molecular and chromosomal evidence for allopolyploidy in soybean. Plant Physiol 151:1167–1174 Gong Z, Wu Y, Koblízková A et al (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24:3559–3574 Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202 Guerra M (2001) Fluorescent in situ hybridization in plant polytene chromosomes. Methods Cell Sci 23:133–138 Guerra M, Kenton A, Bennett MD (1996) rDNA sites in mitotic and polytene chromosomes of Vigna unguiculata (L) Walp and Phaseolus coccineus L revealed by in situ hybridization. Ann Bot 78:157–161 Hall AE (2004) Breeding for adaptation to drought and heat in cowpea. Eur J Agron 21:447–454 Higgins JD, Sanchez-Moran E, Armstrong SJ et al (2005) The Arabidopsis synaptonemal complex protein ZYP1 is required for chromosome synapsis and normal fidelity of crossing over. Genes Dev 19:2488–2500. doi:10.1101/gad.354705 Iovene M, Cavagnaro PF, Senalik D et al (2011) Comparative FISH mapping of Daucus species (Apiaceae family). Chromosom Res 19:493–506 Iwata A, Tek AL, Richard MM et al (2013) Identification and characterization of functional centromeres of the common bean. Plant J 76:47–60 Jiang J, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068 Jiang N, Bao Z, Temnykh S et al (2002) Dasheng: a recently amplified nonautonomous long terminal repeat element that is a major component of pericentromeric regions in rice. Genetics 161:1293–1305 Jiang J, Birchler J, Parrott W, Kelly D (2003) A molecular view of plant centromeres. Trends Plant Sci 8:570–575 Kang YJ, Kim SK, Kim MY et al (2014) Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun 5:5443 Kang YJ, Satyawan D, Shim S et al (2015) Draft genome sequence of adzuki bean, Vigna angularis. Sci Rep 5:8069 Kim JS, Klein PE, Klein RR et al (2005) Molecular cytogenetic maps of sorghum linkage groups 2 and 8. Genetics 169:955–965 Kocsis E, Trus BL, Steer CJ et al (1991) Image averaging of flexible fibrous macromolecules: the clathrin triskelion has an elastic proximal segment. J Struct Biol 107:6–14 Koo DH, Jiang J (2009) Super-stretched pachytene chromosomes for fluorescence in situ hybridization mapping and immunodetection of DNA methylation. Plant J 59:509–516 Koo DH, Jo SH, Bang JW et al (2008) Integration of cytogenetic and genetic linkage maps unveils the physical architecture of tomato chromosome 2. Genetics 179:1211–1220 Kulikova O, Gualtieri G, Geurts R et al (2001) Integration of the FISH pachytene and genetic maps of Medicago truncatula. Plant J 27:49–58 Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412 Lamb JC, Meyer JM, Corcoran B et al (2007) Distinct chromosomal distributions of highly repetitive sequences in maize. Chromosom Res 15:33–49 Lin JY, Jacobus BH, SanMiguel P et al (2005) Pericentromeric regions of soybean (Glycine max L. Merr.) chromosomes consist of retroelements and tandemly repeated DNA and are structurally and evolutionarily labile. Genetics 170:1221–1230 Lin JY, Stupar RM, Hans C et al (2010) Structural and functional divergence of a 1-Mb duplicated region in the soybean (Glycine max) genome and comparison to an orthologous region from Phaseolus vulgaris. Plant Cell 22:2545–2561 Lucas MR, Diop N-N, Wanamaker S et al (2011) Cowpea–soybean synteny clarified through an improved genetic map. Plant Genome J 4:218–225 Lysak M, Fransz P, Schubert I (2006) Cytogenetic analyses of Arabidopsis. Methods Mol Biol 323:173–186 Mandakova T, Lysak MA (2008) Chromosomal phylogeny and karyotype evolution in x = 7 crucifer species (Brassicaceae). Plant Cell 20:2559–2570 Martinez-Zapater JM, Estelle MA, Somerville CR (1986) A highly repeated DNA sequence in Arabidopsis thaliana. Mol Gen Genet 204:417–423 McCarthy EM, McDonald JF (2003) LTR_STRUC: a novel search and identification program for LTR retrotransposons. Bioinformatics 19:362–367 Melters DP, Bradnam KR, Young HA et al (2013) Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol 14:R10 Muchero W, Diop NN, Bhat PR et al (2009) A consensus genetic map of cowpea [Vigna unguiculata (L) Walp.] and synteny based on EST-derived SNPs. Proc Natl Acad Sci U S A 106:18159–18164 Murata M, Ogura Y, Motoyoshi F (1994) Centromeric repetitive sequences in Arabidopsis thaliana. Jpn J Genet 69:361–370 Naylor RL, Falcon WP, Goodman RM et al (2004) Biotechnology in the developing world: a case for increased investments in orphan crops. Food Policy 29:15–44 Neumann P, Navrátilová A, Schroeder-Reiter E et al (2012) Stretching the rules: monocentric chromosomes with multiple centromere domains. PLoS Genet 8:e1002777 Neumann P, Pavlíková Z, Koblížková A et al (2015) Centromeres off the hook: massive changes in centromere size and structure following duplication of CenH3 gene in Fabeae species. Mol Biol Evol 32:1862–1879 Novak P, Neumann P, Macas J (2010) Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinformatics 11:378 Novak P, Neumann P, Pech J et al (2013) RepeatExplorer: a Galaxy-based web server for genome-wide characterization of eukaryotic repetitive elements from next-generation sequence reads. Bioinformatics 29:792–793 Ohmido N, Ishimaru A, Kato S et al (2010) Integration of cytogenetic and genetic linkage maps of Lotus japonicus, a model plant for legumes. Chromosom Res 18:287–299 Pignone D, Cifarelli S, Perrino P (1990) Chromosome identification in Vigna unguiculata (L.) Walp. In: N.Q. Ng and L.M. Monti (eds) Cowpea genetic resources. IITA Ibadan, Nigeria. pp. 144–150 Ross KJ, Fransz P, Jones GH (1996) A light microscopic atlas of meiosis in Arabidopsis thaliana. Chromosom Res 4:507–516 Saccardo F, del Giudice A, Galasso I (1992) Cytogenetics of cowpea. In: Thottappilly G, Monti LM, Mohan Raj DR, Moore AW (eds) Biotechnol enhancing Res Trop Crop Africa. CTS¥A/IITA, Ibadan, pp 89–98 SanMiguel PJ, Ramakrishna W, Bennetzen JL et al (2002) Transposable elements, genes and recombination in a 215-kb contig from wheat chromosome 5A(m). Funct Integr Genomics 2:70–80 Schmutz J, Cannon SB, Schlueter J et al (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183 Sullivan BA, Karpen GH (2004) Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat Struct Mol Biol 11:1076–1083 Szinay D, Chang S-B, Khrustaleva L et al (2008) High-resolution chromosome mapping of BACs using multi-colour FISH and pooled-BAC FISH as a backbone for sequencing tomato chromosome 6. Plant J 56:627–637 Tang XM, de Boer JM, van Eck HJ et al (2009) Assignment of genetic linkage maps to diploid Solanum tuberosum pachytene chromosomes by BAC-FISH technology. Chromosom Res 17:899–915 Unfried K, Schiebel K, Hemleben V (1991) Subrepeats of rDNA intergenic spacer present as prominent independent satellite DNA in Vigna radiata but not in Vigna angularis. Gene 99:63–68 Vasconcelos EV, de Andrade Fonsêca AF, Pedrosa-Harand A et al (2015) Intra- and interchromosomal rearrangements between cowpea [Vigna unguiculata (L.) Walp.] and common bean (Phaseolus vulgaris L.) revealed by BAC-FISH. Chromosom Res 23:253–266 Venora G, Padulosi S (1997) Karyotypic analysis of wild taxa of V. unguiculata (L.) Walpers. Caryologia 50(2):125–138 Walling JG, Pires JC, Jackson SA (2005) Preparation of samples for comparative studies of plant chromosomes using in situ hybridization methods. Mol Evol Prod Biochem Data B 395:443–460 Walling JG, Shoemaker R, Young N et al (2006) Chromosome-level homeology in paleopolyploid soybean (Glycine max) revealed through integration of genetic and chromosome maps. Genetics 172:1893–1900 Wang C, Harper L, Cande W (2006a) High-resolution single-copy gene fluorescence in situ hybridization and its use in the construction of a cytogenetic map of maize chromosome 9. Plant Cell 18:529–544 Wang Y, Tang X, Cheng Z et al (2006b) Euchromatin and pericentromeric heterochromatin: comparative composition in the tomato genome. Genetics 172:2529–2540 Xiong Z, Pires JC (2011) Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 187:37–49 Xu Z, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35:W265–W268 Yan H, Kikuchi S, Neumann P et al (2010) Genome-wide mapping of cytosine methylation revealed dynamic DNA methylation patterns associated with genes and centromeres in rice. Plant J 63:353–365 Zhang D, Yang Q, Bao W et al (2005) Molecular cytogenetic characterization of the Antirrhinum majus genome. Genetics 169:325–335 Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in arabidopsis. Cell 126:1189–1201 Zhang W, Lee HR, Koo DH, Jiang J (2008) Epigenetic modification of centromeric chromatin: hypomethylation of DNA sequences in the CENH3-associated chromatin in Arabidopsis thaliana and maize. Plant Cell 20:25–34 Zhao Q, Zhang Y, Cheng Z et al (2002) A fine physical map of the rice chromosome 4. Genome Res 12:817–823