Các vùng bảo tồn cao trong RNA polymerase phụ thuộc RNA của virus Ebola có thể hoạt động như một mục tiêu vaccine peptide mới toàn cầu: một tiếp cận tính toán

In Silico Pharmacology - Tập 3 Số 1
Arafat Rahman Oany1, Tahmina Sharmin1, Arshad Chowdhury2, Tahmina Pervin3, Md. Anayet Hasan2
1Department of Biotechnology and Genetic Engineering, Faculty of Life Science, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh.
2Department of Genetic Engineering and Biotechnology, Faculty of Biological Sciences, University of Chittagong, Chittagong-4331, Bangladesh
3Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna-9208, Bangladesh.

Tóm tắt

Tóm tắt Mục đích

Virus Ebola (EBOV) là một loại virus chịu trách nhiệm cho 23.825 ca bệnh và 9.675 ca tử vong trên toàn thế giới chỉ trong năm 2014, với tỷ lệ tử vong trung bình của bệnh từ 25% đến 90%. Mặc dù công nghệ y tế đã cố gắng giải quyết các vấn đề này, nhưng hiện tại chưa có liệu pháp hoặc vaccine nào được Cục Quản lý Thực phẩm và Dược phẩm (FDA) phê chuẩn để ngăn ngừa, điều trị sau khi phơi nhiễm hoặc điều trị bệnh Ebola (EVD).

Phương pháp

Trong nghiên cứu hiện tại, chúng tôi đã sử dụng tiếp cận miễn dịch thông tin để thiết kế một vaccine dựa trên epitope tiềm năng chống lại RNA polymerase phụ thuộc RNA loại L của EBOV. BioEdit v7.2.3, Jalview v2 và CLC Sequence Viewer v7.0.2 đã được sử dụng cho phân tích chuỗi ban đầu để đảm bảo tính bảo tồn từ các chuỗi. Sau đó, Cơ sở Dữ liệu và Tài nguyên Phân tích Epitope Miễn dịch (IEDB-AR) đã được sử dụng để xác định các epitope T-cell và B-cell liên quan đến phân tích phân tử phức hợp tương thích mô chính loại I và II. Cuối cùng, phân tích mức độ bao phủ dân số đã được thực hiện.

Kết quả

Epitope cốt lõi “FRYEFTAPF” được tìm thấy là epitope tiềm năng nhất, với 100% tính bảo tồn giữa tất cả các chủng virus EBOV. Nó cũng tương tác với cả phân tử phức hợp tương thích mô chính loại I và II và được xem là không gây dị ứng. Cuối cùng, với mức độ bao phủ dân số tích lũy ấn tượng là 99,87% cho cả lớp MHC-I và MHC-II trên toàn thế giới được tìm thấy cho epitope được đề xuất.

Kết luận

Cuối cùng, peptide dự kiến đã cho chúng tôi một cơ sở vững chắc để đề xuất xem xét vaccine và có thể được thử nghiệm để kiểm tra khả năng tạo miễn dịch thông qua các phản ứng miễn dịch dịch thể và trung gian tế bào in vitroin vivo.

Từ khóa


Tài liệu tham khảo

Apweiler R, Bairoch A, Wu CH et al (2004) UniProt: the universal protein knowledgebase. Nucleic Acids Res 32(1):115–119

Arnold K, Bordoli L, Kopp J et al (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics 22(2):195–201

Bacchetta R, Gregori S, Roncarolo M-G (2005) CD4+ regulatory T cells: mechanisms of induction and effector function. Autoimmun Rev 4(8):491–496

Baize S, Pannetier D, Oestereich L et al (2014) Emergence of Zaire Ebola virus disease in Guinea. N Engl J Med 371(15):1418–1425

Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics 27(3):343–350

Bhasin M, Raghava G (2004) Prediction of CTL epitopes using QM, SVM and ANN techniques. Vaccine 22(23):3195–3204

Bourdette DN, Edmonds E, Smith C et al (2005) A highly immunogenic trivalent T cell receptor peptide vaccine for multiple sclerosis. Mult Scler 11(5):552–561

Bui HH, Sidney J, Dinh K et al (2006) Predicting population coverage of T-cell epitope-based diagnostics and vaccines. BMC Bioinformatics 17(7):153

Bui HH, Sidney J, Li W et al (2007) Development of an epitope conservancy analysis tool to facilitate the design of epitope-based diagnostics and vaccines. BMC Bioinformatics 8(1):361

Choi JH, Croyle MA (2013) Emerging targets and novel approaches to Ebola virus prophylaxis and treatment. BioDrugs 27(6):565–583

Chou PY, Fasman GD (1979) Empirical predictions of protein conformation. Annu Rev Biochem 47:251–276

Chowell G, Hengartner NW, Castillo-Chavez C et al (2004) The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. J Theor Biol 229(1):119–126

Crary S, Towner J, Honig J et al (2003) Analysis of the role of predicted RNA secondary structures in Ebola virus replication. Virology 306:210–218

Doytchinova IA, Flower DR (2007) VaxiJen: a server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics 8(1):4

Elisha A, Adegboro B (2014) Ebola virus diseases. Afr J Clin Exp Microbiol 15(3):117–121

Emini EA, Hughes JV, Perlow DS et al (1985) Induction of hepatitis A virus-neutralizing antibody by a virus-specific synthetic peptide. J Virol 55(3):836–839

Evans DK, Popova A (2015) West African Ebola crisis and orphans. Lancet 385(9972):945–946

Feldmann H, Volchkov VE, Volchkova VA et al (1999) The glycoproteins of Marburg and Ebola virus and their potential roles in pathogenesis. Arch Virol 15:159–169

Feldmann H, Volchkov V, Ströher U et al (2001) Biosynthesis and role of filovirus glycoprotein. J Gen Virol 82:2839–2848

Feldmann H, Jones S, Klenk HD et al (2003) Ebola virus: from discovery to vaccine. Nat Rev Immunol 3(8):677–685

Fiser A, Do RK, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9:1753–1773

Frieden TR, Damon I, Bell BP et al (2014) Ebola 2014—new challenges, new global response and responsibility. N Engl J Med 371(13):1177–1180

Garcia KC, Teyton L, Wilson IA (1999) Structural basis of T cell recognition. Annu Rev Immunol 17:369–397

Garcia-Boronat M, Diez-Rivero CM, Reinherz EL et al (2008) PVS: a web server for protein sequence variability analysis tuned to facilitate conserved epitope discovery. Nucleic Acids Res 36(2):35–41

Gatherer D (2014) The 2014 Ebola virus disease outbreak in West Africa. J Gen Virol 95(8):1619–1624

Geisbert TW, Geisbert JB, Leung A et al (2009) Single-injection vaccine protects nonhuman primates against infection with marburg virus and three species of ebola virus. J Virol 83(14):7296–7304

Germain RN (1994) MHC-dependent antigen processing and peptide presentation: providing ligands for T lymphocyte activation. Cell 76(2):287–299

Goeijenbier M, van Kampen JJ, Reusken CB (2014) Ebola virus disease: a review on epidemiology, symptoms, treatment and pathogenesis. Neth J Med 72(9):442–448

Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

Hasan MA, Hossain M, Alam MJ (2013) A computational assay to design an epitope-based Peptide vaccine against Saint Louis encephalitis virus. Bioinform Biol Insights 7:347–355

Hasan MA, Khan MA, Datta A et al (2015) A comprehensive immunoinformatics and target site study revealedthe corner-stone toward Chikungunya virus treatment. Mol Immunol 65:189–204

Hewlett BL, Hewlett BS (2005) Providing care and facing death: nursing during Ebola outbreaks in central Africa. J Transcult Nurs 16(4):289–297

Hoenen T, Groseth A, Feldmann H (2012) Current Ebola vaccines. Expert Opin Biol Ther 12(7):859–872

Holland J, Domingo E (1998) Origin and evolution of viruses. Virus Genes 16(1):13–21

Hoof I, Peters B, Sidney J et al (2009) NetMHCpan, a method for MHC class I binding prediction beyond humans. Immunogenetics 61:1–13

Igietseme JU, Eko FO, He Q, Black CM (2004) Antibody regulation of T-cell immunity: implications for vaccine strategies against intracellular pathogens. Expert Rev Vaccines 3(1):23–34

Keiser J, Utzinger J, Tanner M, Singer BH (2004) Representation of authors and editors from countries with different human development indexes in the leading literature on tropical medicine: survey of current evidence. BMJ 328(7450):1229–1232

Khan MK, Zaman S, Chakraborty S et al (2014) In silico predicted mycobacterial epitope elicits in vitro T-cell responses. Mol Immunol 61(1):16–22

Klein RS, Lin E, Zhang B et al (2005) Neuronal CXCL10 directs CD8+ T-cell recruitment and control of West Nile virus encephalitis. J Virol 79(17):11457–11466

Kolaskar AS, Tongaonkar PC (1990) A semi-empirical method for prediction of antigenic determinants on protein antigens. FEBS Lett 276(1–2):172–174

Kuhn JH, Becker S, Ebihara H et al (2010) Proposal for a revised taxonomy of the family Filoviridae: classification, names of taxa and viruses, and virus abbreviations. Arch Virol 155(12):2083–2103

Larsen MV, Lundegaard C, Lamberth K et al (2007) Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction. BMC Bioinformatics 8(1):424

Laskowski RA, Rullmann JAC, MacArthur MW et al (1996) AQUA and PROCHECK-NMR: programs for checking the quality of protein structures solved by NMR. J Biomol NMR 8(4):477–486

Leroy EM, Rouquet P, Formenty P et al (2004) Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science 303(5656):387–390

Li YH, Chen SP (2014) Evolutionary history of Ebola virus. Epidemiol Infect 142(06):1138–1145

Liao L, Noble WS (2003) Combining pairwise sequence similarity and support vector machines for detecting remote protein evolutionary and structural relationships. J Comput Biol 10(6):857–868

López JA, Weilenman C, Audran R et al (2001) A synthetic malaria vaccine elicits a potent CD8+ and CD4+ T lymphocyte immune response in humans. Implications for vaccination strategies. Eur J Immunol 31(7):1989–1998

McKeever TM, Lewis SA, Smith C et al (2004) Vaccination and allergic disease: a birth cohort study. Am J Public Health 94(6):985

Muh HC, Tong JC, Tammi MT (2009) AllerHunter: a SVM-pairwise system for assessment of allergenicity and allergic cross-reactivity in proteins. PLoS One 4(6):5861

Mühlberger E, Lotfering B, Klenk H-D et al (1998) Three of the four nucleocapsid proteins of Marburg virus, NP, VP35, and L, are sufficient to mediate replication and transcription of Marburg virus-specific monocistronic minigenomes. J Virol 72:8756–8764

Mühlberger E, Weik M, Volchkov V et al (1999) Comparison of the transcription and replication strategies of Marburg virus and Ebola virus by using artificial replication systems. J Virol 73:2333–2342

Nair DT, Singh K, Siddiqui Z et al (2002) Epitope recognition by diverse antibodies suggests conformational convergence in an antibody response. J Immunol 168(5):2371–2382

Nielsen M, Lundegaard C, Blicher T et al (2007) NetMHCpan, a method for quantitative predictions of peptide binding to any HLA-A and -B locus protein of known sequence. PLoS One 2:796

Oany AR, Emran AA, Jyoti TP (2008) Design of an epitope-based peptide vaccine against spike protein of human corona virus: an in silico approach. Drug Des Devel Ther 8:1139–1149

Oany AR, Ahmad SAI, Hossain MU, Jyoti TP (2015) Identification of highly conserved regions in L-segment of Crimean–Congo hemorrhagic fever virus and immunoinformatic prediction about potential novel vaccine. Adv Appl Bioinformatics Chem 8:1–10

Parker JM, Guo D, Hodges RS (1986) New hydrophilicity scale derived from high-performance liquid chromatography peptide retention data: correlation of predicted surface residues with antigenicity and X-ray-derived accessible sites. Biochemistry 25:5425–5432

Peters CJ, Peters JW (1999) An introduction to Ebola: the virus and the disease. J Infect Dis 179(1):ix–xvi

Peters B, Sette A (2005) Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method. BMC Bioinformatics 6(1):132

Petrovsky N, Brusic V (2002) Computational immunology: the coming of age. Immunol Cell Biol 80(3):248–254

Poch O, Blumberg BM, Bougueleret L et al (1990) Sequence comparison of five polymerases (L proteins) of unsegmented negative-strand RNA viruses: theoretical assignment of functional domains. J Gen Virol 71:1153–1162

Poland GA, Ovsyannikova IG, Jacobson RM (2009) Application of pharmacogenomics to vaccines. Pharmacogenomics 10(5):837–852

Rini JM, Schulze-Gahmen U, Wilson IA (1992) Structural evidence for induced fit as a mechanism for antibody-antigen recognition. Science 255(5047):959–965

Robinson HL, Amara RR (2005) T cell vaccines for microbial infections. Nat Med 11:25–32

Rouquet P, Froment JM, Bermejo M (2005) Wild animal mortality monitoring and human Ebola outbreaks, Gabon and Republic of Congo, 2001–2003. Emerg Infect Dis 11(2):283–290

Sali A, Blundell TL (1993) Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234:779–815

Šali A, Potterton L, Yuan F et al (1995) Evaluation of comparative protein modeling by MODELLER. Proteins 23(3):318–326

Sette A, Fikes J (2003) Epitope-based vaccines: an update on epitope identification, vaccine design and delivery. Curr Opin Immunol 15(4):461–470

Sette A, Newman M, Livingston B et al (2002) Optimizing vaccine design for cellular processing, MHC binding and TCR recognition. Tissue Antigens 59(6):443–451

Shrestha B, Diamond MS (2004) Role of CD8+ T cells in control of West Nile virus infection. J Virol 78(15):8312–8321

Sullivan NJ, Sanchez A, Rollin PE, Yang ZY, Nabel GJ (2000) Development of a preventive vaccine for Ebola virus infection in primates. Nature 408:605–609

Takada A, Robison C, Goto H et al (1997) A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci 94(26):14764–14769

Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680

Trainor NB, Crill WD, Roberson JA et al (2007) Mutation analysis of the fusion domain region of St. Louis encephalitis virus envelope protein. Virology 360(2):398–406

Twiddy SS, Holmes EC, Rambaut A (2003) Inferring the rate and time-scale of dengue virus evolution. Mol Biol Evol 20(1):122–129

Volchkov VE et al (1999) Characterization of the L gene and 5′trailer region of Ebola virus. J Gen Virol 80(2):355–362

Wang P, Sidney J, Dow C et al (2008) A systematic assessment of MHC class II peptide binding predictions and evaluation of a consensus approach. PLoS Comput Biol 4(4):e1000048

Wang P, Sidney J, Kim Y et al (2010) Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics 11(1):568

Ward JJ, McGuffin LJ, Bryson K et al (2004) The DISOPRED server for the prediction of protein disorder. Bioinformatics 20(13):2138–2139

Waterhouse AM, Procter JB, Martin DM et al (2009) Jalview version 2 – a multiple sequence alignment editor and analysis workbench. Bioinformatics 25(9):1189–1191

Wilson CC, McKinney D, Anders M et al (2003) Development of a DNA vaccine designed to induce cytotoxic T lymphocyte responses to multiple conserved epitopes in HIV-1. J Immunol 171(10):5611–5623