Highly conductive and durable poly(arylene ether sulfone) anion exchange membrane with end-group cross-linking

Energy and Environmental Science - Tập 10 Số 1 - Trang 275-285
Kang Hyuck Lee1,2,3,4,5, Doo Hee Cho1,2,3,4,5, Young Mi Kim1,2,3,4,5, Sun Ju Moon1,2,3,4,5, Jong Geun Seong1,2,3,4,5, Dong Won Shin1,2,6,3,5, Joon‐Yong Sohn1,2,7,3,5, Jeong F. Kim1,2,3,4,5, Young Moo Lee1,2,3,4,5
1College of Engineering
2Department of Energy Engineering, College of Engineering, Hanyang University, Seoul, 04763, Republic of Korea
3Hanyang University
4Republic of Korea
5Seoul 04763
6Fuel Cell Laboratory, Korea Institute of Energy Research, Daejeon, 34129, Republic of Korea
7Department of Energy Radiation Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, 1266 Sinjeongdong, Jeongeup-si, Jeollabuk-do 56212, Republic of Korea

Tóm tắt

A novel end-group crosslinked anion exchange membrane showed the connecting ionic-clustered morphology that improved electrochemical performances and durability for alkaline fuel cell operation.

Từ khóa


Tài liệu tham khảo

Zhang, 2012, Chem. Soc. Rev., 41, 2382, 10.1039/c2cs15269j

Park, 2011, Prog. Polym. Sci., 36, 1443, 10.1016/j.progpolymsci.2011.06.001

Couture, 2011, Prog. Polym. Sci., 36, 1521, 10.1016/j.progpolymsci.2011.04.004

Park, 2016, Nature, 532, 480, 10.1038/nature17634

Lee, 2016, Nat. Energy, 1, 16136, 10.1038/nenergy.2016.136

Pan, 2014, Energy Environ. Sci., 7, 354, 10.1039/C3EE43275K

Lee, 2016, Nat. Energy, 1, 16120, 10.1038/nenergy.2016.120

Lee, 2012, Energy Environ. Sci., 5, 9795, 10.1039/c2ee21992a

Li, 2012, Energy Environ. Sci., 5, 7888, 10.1039/c2ee22050d

Li, 2014, Chem. Commun., 50, 4092, 10.1039/c3cc49027k

Matsumoto, 2011, Adv. Funct. Mater., 21, 1089, 10.1002/adfm.201001806

Deavin, 2012, Energy Environ. Sci., 5, 8584, 10.1039/c2ee22466f

Varcoe, 2014, Energy Environ. Sci., 7, 3135, 10.1039/C4EE01303D

Pan, 2013, Energy Environ. Sci., 6, 2912, 10.1039/c3ee41968a

Li, 2013, J. Am. Chem. Soc., 135, 10124, 10.1021/ja403671u

Thomas, 2012, J. Am. Chem. Soc., 134, 10753, 10.1021/ja303067t

Yang, 2013, Adv. Energy Mater., 3, 622, 10.1002/aenm.201200710

Ma, 2012, Energy Environ. Sci., 5, 7617, 10.1039/c2ee21521g

Shin, 2014, Int. J. Hydrogen Energy, 39, 4459, 10.1016/j.ijhydene.2014.01.006

Ko, 2015, Macromolecules, 48, 1104, 10.1021/ma5021616

Wang, 2014, Polym. Chem., 5, 2928, 10.1039/c3py01490h

Henkensmeier, 2014, Int. J. Hydrogen Energy, 39, 2842, 10.1016/j.ijhydene.2013.07.091

Xie, 2014, J. Power Sources, 262, 328, 10.1016/j.jpowsour.2014.03.064

Lin, 2013, J. Mater. Chem. A, 1, 7262, 10.1039/c3ta10308k

Tripathi, 2010, J. Membr. Sci., 360, 90, 10.1016/j.memsci.2010.05.005

Lee, 2009, Macromolecules, 42, 584, 10.1021/ma802233j

Kang, 2016, J. Power Sources, 307, 834, 10.1016/j.jpowsour.2016.01.051

Lee, 2010, J. Membr. Sci., 352, 180, 10.1016/j.memsci.2010.02.014

He, 2016, J. Membr. Sci., 509, 48, 10.1016/j.memsci.2016.02.045

Lee, 2015, J. Power Sources, 282, 211, 10.1016/j.jpowsour.2015.01.191

Doughty, 1924, J. Am. Chem. Soc., 46, 2707, 10.1021/ja01677a014

Li, 2013, ChemSusChem, 6, 1376, 10.1002/cssc.201300320

Naudy, 2014, J. Membr. Sci., 451, 293, 10.1016/j.memsci.2013.10.013

Zhuang, 2016, Chem. Commun., 52, 3817, 10.1039/C5CC09783E

Wang, 2014, Macromolecules, 47, 6355, 10.1021/ma501409v