Highly Enhanced Full Solar Spectrum‐Driven Photocatalytic CO2 Reduction Performance in Cu2–xS/g‐C3N4 Composite: Efficient Charge Transfer and Mechanism Insight

Solar RRL - Tập 5 Số 2 - 2021
Lisha Jiang1, Kai Wang1, Xiaoyong Wu1, Gaoke Zhang1
1State Key Laboratory of Silicate Materials for Architectures, Hubei Key Laboratory of Mineral Resources Processing and Environment, Wuhan University of Technology, Wuhan, 430070 China

Tóm tắt

An efficient full solar spectrum ultraviolet–visible–near infrared (UV–vis–NIR) light‐driven Cu2–xS/g‐C3N4 composite photocatalyst is reported, which is fabricated by a facile solvothermal process for CO2 photoreduction into CO and CH4, as confirmed by product analysis and 13C isotopic test. The composite exhibits superior full solar‐spectrum‐driven CO2 photoreduction performance than pure Cu2–xS and g‐C3N4, which is attributed to the efficient charge transfer due to the formation of intimate interface contact and SC bond coupling between Cu2–xS and g‐C3N4 based on experimental analyses and theoretical calculations. In particular, the activities of the best composite for CO2 photoreduction into CO and CH4 under NIR light irradiation are about 2.6 times and 6.6 times higher than that of Cu2–xS, whereas no production is measured over g‐C3N4. A possible mechanism of photocatalytic CO2 reduction is given based on in situ Fourier transform infrared (FTIR) analysis. This study paves the way to prepare carbon nitride–based photocatalysts with full‐spectrum‐responsive property for efficient CO2 photoreduction.

Từ khóa


Tài liệu tham khảo

10.1002/adfm.201900093

10.1002/advs.201900796

10.1002/anie.201809492

10.1016/j.apcatb.2017.05.064

10.1016/j.apcatb.2020.118738

10.1016/j.apsusc.2018.09.099

10.1002/solr.201900487

10.1002/solr.202000116

10.1002/adma.201806626

10.1002/anie.201804996

10.1021/jacs.8b12928

10.1016/j.apcatb.2018.02.024

10.1002/anie.201708709

10.1002/solr.202000070

10.1016/j.nanoen.2019.03.010

10.1002/adma.201901261

10.1021/acsami.9b05074

10.1021/acs.est.0c04163

10.1021/acsami.9b07311

10.1016/j.apcatb.2019.118181

10.1016/j.apcatb.2019.05.032

10.1016/j.apcatb.2018.06.042

10.1039/C7EE01109A

10.1016/j.apcatb.2019.118326

10.1002/solr.201900538

10.1002/solr.202000170

10.1002/solr.202000168

10.1016/j.apcatb.2016.09.052

10.1016/j.apsusc.2018.07.087

10.1016/j.apcatb.2016.08.064

10.1021/jacs.8b10692

10.1021/ja805655b

10.1364/OME.6.003838

10.1021/acsnano.6b00649

10.1021/acsami.8b02984

10.1021/nl202587b

10.1016/j.apcatb.2019.01.042

10.1016/j.solidstatesciences.2016.11.001

10.1021/acsami.8b08428

10.1016/j.jcat.2017.06.006

10.1021/acs.est.9b00641

10.1021/acssuschemeng.7b04461

10.1039/C9CC03455B

10.1016/j.apcatb.2015.01.012

10.1002/chem.201804925

10.1039/C4CC09065A

10.1021/ja409754v

10.1016/j.apcatb.2018.02.006

10.1039/C6TA00073H

10.1021/acsami.7b08138

10.1016/j.apcatb.2014.08.013

10.1021/jacs.7b02290

10.1002/solr.201800006

10.1002/adma.201700008

10.1039/c3ta12332d

10.1021/acsnano.6b08251

10.1021/cm302363x

10.1021/ja207798q

10.1039/B616744F

10.1016/j.joule.2018.02.019

10.1021/acscatal.8b00272

10.1039/C6EE02974D

10.1021/acscatal.7b02952

10.1016/j.apcatb.2020.118879

10.1039/C6TA00497K

10.1016/j.apcatb.2019.118250

10.1002/anie.201806043

10.1021/acscatal.8b04720

10.1016/j.apcatb.2018.03.036

10.1016/j.apcata.2019.117305

10.1039/C8EE01781F

10.1021/acscatal.8b02441

10.1038/s41560-019-0431-1