Highly Concentrated, Conductive, Defect-free Graphene Ink for Screen-Printed Sensor Application
Tóm tắt
Conductive inks based on graphene materials have received significant attention for the fabrication of a wide range of printed and flexible devices. However, the application of graphene fillers is limited by their restricted mass production and the low concentration of their suspensions. In this study, a highly concentrated and conductive ink based on defect-free graphene was developed by a scalable fluid dynamics process. A high shear exfoliation and mixing process enabled the production of graphene at a high concentration of 47.5 mg mL−1 for graphene ink. The screen-printed graphene conductor exhibits a high electrical conductivity of 1.49 × 104 S m−1 and maintains high conductivity under mechanical bending, compressing, and fatigue tests. Based on the as-prepared graphene ink, a printed electrochemical sodium ion (Na+) sensor that shows high potentiometric sensing performance was fabricated. Further, by integrating a wireless electronic module, a prototype Na+-sensing watch is demonstrated for the real-time monitoring of the sodium ion concentration in human sweat during the indoor exercise of a volunteer. The scalable and efficient procedure for the preparation of graphene ink presented in this work is very promising for the low-cost, reproducible, and large-scale printing of flexible and wearable electronic devices.
Tài liệu tham khảo
H. Teymourian, M. Parrilla, J.R. Sempionatto, N.F. Montiel, A. Barfidokht et al., Wearable electrochemical sensors for the monitoring and screening of drugs. ACS Sen. 5, 2679–2700 (2020). https://doi.org/10.1021/acssensors.0c01318
J. Kim, A.S. Campbell, B.E.-F. Ávila, J. Wang, Wearable biosensors for healthcare monitoring. Nat. Biotechnol. 37, 389–406 (2019). https://doi.org/10.1038/s41587-019-0045-y
Y. Song, J. Min, W. Gao, Wearable and implantable electronics: moving toward precision therapy. ACS Nano 13, 12280–12286 (2019). https://doi.org/10.1021/acsnano.9b08323
J. Min, J.R. Sempionatto, H. Teymourian, J. Wang, W. Gao, Wearable electrochemical biosensors in north america. Biosens. Bioelectron. 172, 112750 (2021). https://doi.org/10.1016/j.bios.2020.112750
M. Bariya, L. Li, R. Ghattamaneni, C.H. Ahn, H.Y.Y. Nyein et al., Glove-based sensors for multimodal monitoring of natural sweat. Sci. Adv. 6, eabb8308 (2020). https://doi.org/10.1126/sciadv.abb8308
Y. Ling, T. An, L.W. Yap, B. Zhu, S. Gong et al., Disruptive, soft, wearable sensors. Adv. Mater. 32, 1904664 (2020). https://doi.org/10.1002/adma.201904664
Y. Yu, H.Y.Y. Nyein, W. Gao, A. Javey, Flexible electrochemical bioelectronics: the rise of in situ bioanalysis. Adv. Mater. 32, 1902083 (2020). https://doi.org/10.1002/adma.201902083
T. Li, Y. Li, T. Zhang, Materials, structures, and functions for flexible and stretchable biomimetic sensors. Acc. Chem. Res. 52, 288–296 (2019). https://doi.org/10.1021/acs.accounts.8b00497
Z. Lou, L. Wang, K. Jiang, Z. Wei, G. Shen, Reviews of wearable healthcare systems: materials, devices and system integration. Mater. Sci. Eng. R Rep. 140, 100523 (2020). https://doi.org/10.1016/j.mser.2019.100523
Y. Shen, Y. Wang, Z. Luo, B. Wang, Durable, sensitive, and wide-range wearable pressure sensors based on wavy-structured flexible conductive composite film. Macromol. Mater. Eng. 305, 2000206 (2020). https://doi.org/10.1002/mame.202000206
J. Yun, H. Lee, C. Song, Y.R. Jeong, J.W. Park et al., A fractal-designed stretchable and transparent microsupercapacitor as a skin-attachable energy storage device. Chem. Eng. J. 387, 124076 (2020). https://doi.org/10.1016/j.cej.2020.124076
T. Chu, J. Chu, B. Gao, B. He, Modern evolution of paper-based analytical devices for wearable use: from disorder to order. Analyst 145, 5388–5399 (2020). https://doi.org/10.1039/D0AN00994F
H.C. Lee, E.Y. Hsieh, K. Yong, S. Nam, Multiaxially-stretchable kirigami-patterned mesh design for graphene sensor devices. Nano Res. 13, 1406–1412 (2020). https://doi.org/10.1007/s12274-020-2662-7
S. Wang, Y. Bai, X. Yang, L. Liu, L. Li et al., Highly stretchable potentiometric ion sensor based on surface strain redistributed fiber for sweat monitoring. Talanta 214, 120869 (2020). https://doi.org/10.1016/j.talanta.2020.120869
H. Teymourian, A. Barfidokht, J. Wang, Electrochemical glucose sensors in diabetes management: an updated review (2010–2020). Chem. Soc. Rev. 49, 7671–7709 (2020). https://doi.org/10.1039/D0CS00304B
S.P. Sreenilayam, I.U. Ahad, V. Nicolosi, V.A. Garzon, D. Brabazon, Advanced materials of printed wearables for physiological parameter monitoring. Mater. Today 32, 147–177 (2020). https://doi.org/10.1016/j.mattod.2019.08.005
H. Lee, Y.J. Hong, S. Baik, T. Hyeon, D.-H. Kim, Enzyme-based glucose sensor: from invasive to wearable device. Adv. Healthc. Mater. 7, 1701150 (2018). https://doi.org/10.1002/adhm.201701150
Y. Yan, W. Gao, Wearable and flexible electronics for continuous molecular monitoring. Chem. Soc. Rev. 48, 1465–1491 (2019). https://doi.org/10.1039/C7CS00730B
A.J. Bandodkar, J. Wang, Non-invasive wearable electrochemical sensors—a review. Trends Biotechnol. 32, 363–371 (2014). https://doi.org/10.1016/j.tibtech.2014.04.005
M.A. Arnold, G.W. Small, Noninvasive glucose sensing. Anal. Chem. 77, 5429–5439 (2005). https://doi.org/10.1021/ac050429e
J. Heikenfeld, A. Jajack, J. Rogers, P. Gutruf, L. Tian et al., Wearable sensors: modalities, challenges, and prospects. Lab Chip 18, 217–248 (2018). https://doi.org/10.1039/C7LC00914C
R.M. Torrente-Rodríguez, J. Tu, Y. Yang, J. Min, M. Wang et al., Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system. Matter 2, 921–937 (2020). https://doi.org/10.1016/j.matt.2020.01.021
J. Xu, Z. Zhang, S. Gan, H. Gao, H. Kong et al., Highly-stretchable fiber-based potentiometric ion sensors for multichannel real-time analysis of human sweat. ACS Sens. 5, 2834–2842 (2020). https://doi.org/10.1021/acssensors.0c00960
Q. An, S. Gan, J. Xu, Y. Bao, T. Wu et al., A multichannel electrochemical all-solid-state wearable potentiometric sensor for real-time sweat ion monitoring. Electrochem. Commun. 107, 106553 (2019). https://doi.org/10.1016/j.elecom.2019.106553
H.Y.Y. Nyein, M. Bariya, L. Kivimäki, S. Uusitalo, T.S. Liaw et al., Regional and correlative sweat analysis using high-throughput microfluidic sensing patches toward decoding sweat. Sci. Adv. 5, eaaw9906 (2019). https://doi.org/10.1126/sciadv.aaw9906
H.Y.Y. Nyein, L.-C. Tai, Q.P. Ngo, M. Chao, G.B. Zhang et al., A wearable microfluidic sensing patch for dynamic sweat secretion analysis. ACS Sens. 3, 944–952 (2018). https://doi.org/10.1021/acssensors.7b00961
S. Zhang, M.A. Zahed, Md. Sharifuzzaman, S. Yoon, X. Hui et al., A wearable battery-free wireless and skin-interfaced microfluidics integrated electrochemical sensing patch for on-site biomarkers monitoring in human perspiration. Biosens. Bioelectron. 175, 112844 (2021). https://doi.org/10.1016/j.bios.2020.112844
M. Ochoa, R. Rahimi, J. Zhou, H. Jiang, C.K. Yoon et al., Integrated sensing and delivery of oxygen for next-generation smart wound dressings. Microsyst. Nanoeng. 6, 46 (2020). https://doi.org/10.1038/s41378-020-0141-7
S. Bobovych, F. Sayeed, N. Banerjee, R. Robucci, R.P. Allen, RestEaZe: low-power accurate sleep monitoring using a wearable multi-sensor ankle band. Smart Health 16, 100113 (2020). https://doi.org/10.1016/j.smhl.2020.100113
L. Manjakkal, W. Dang, N. Yogeswaran, R. Dahiya, Textile-based potentiometric electrochemical pH sensor for wearable applications. Biosensors 9, 14 (2019). https://doi.org/10.3390/bios9010014
A. Hatamie, S. Angizi, S. Kumar, C.M. Pandey, A. Simchi et al., Textile based chemical and physical sensors for healthcare monitoring. J. Electrochem. Soc. 167, 037546 (2020). https://doi.org/10.1149/1945-7111/ab6827
W. He, C. Wang, H. Wang, M. Jian, W. Lu et al., Integrated textile sensor patch for real-time and multiplex sweat analysis. Sci. Adv. 5, eaax0649 (2019). https://doi.org/10.1126/sciadv.aax0649
A.J. Bandodkar, W. Jia, C. Yardimcı, X. Wang, J. Ramirez et al., Tattoo-based noninvasive glucose monitoring: a proof-of-concept study. Anal. Chem. 87, 394–398 (2015). https://doi.org/10.1021/ac504300n
J.R. Sempionatto, I. Jeerapan, S. Krishnan, J. Wang, Wearable chemical sensors: emerging systems for on-body analytical chemistry. Anal. Chem. 92, 378–396 (2020). https://doi.org/10.1021/acs.analchem.9b04668
A.J. Bandodkar, I. Jeerapan, J. Wang, Wearable chemical sensors: present challenges and future prospects. ACS Sens. 1, 464–482 (2016). https://doi.org/10.1021/acssensors.6b00250
T.R. Ray, J. Choi, A.J. Bandodkar, S. Krishnan, P. Gutruf et al., Bio-integrated wearable systems: a comprehensive review. Chem. Rev. 119, 5461–5533 (2019). https://doi.org/10.1021/acs.chemrev.8b00573
Q. Li, J. Zhang, Q. Li, G. Li, X. Tian et al., Review of printed electrodes for flexible devices. Front. Mater. 5, 77 (2019). https://doi.org/10.3389/fmats.2018.00077
P.S. Sfragano, S. Laschi, I. Palchetti, Sustainable printed electrochemical platforms for greener analytics. Front. Chem. 8, 644 (2020). https://doi.org/10.3389/fchem.2020.00644
F. Bonaccorso, A. Bartolotta, J.N. Coleman, C. Backes, 2D-crystal-based functional inks. Adv. Mater. 28, 6136–6166 (2016). https://doi.org/10.1002/adma.201506410
G. Hu, J. Kang, L.W.T. Ng, X. Zhu, R.C.T. Howe et al., Functional inks and printing of two-dimensional materials. Chem. Soc. Rev. 47, 3265–3300 (2018). https://doi.org/10.1039/C8CS00084K
T.S. Tran, N.K. Dutta, N.R. Choudhury, Graphene inks for printed flexible electronics: graphene dispersions, ink formulations, printing techniques and applications. Adv. Colloid Interface Sci. 261, 41–61 (2018). https://doi.org/10.1016/j.cis.2018.09.003
K. Pan, Y. Fan, T. Leng, J. Li, Z. Xin et al., Sustainable production of highly conductive multilayer graphene ink for wireless connectivity and IoT applications. Nat. Commun. 9, 5197 (2018). https://doi.org/10.1038/s41467-018-07632-w
S. Park, R.S. Ruoff, Chemical methods for the production of graphenes. Nat. Nanotechnol. 4, 217–224 (2009). https://doi.org/10.1038/nnano.2009.58
V. Nicolosi, M. Chhowalla, M.G. Kanatzidis, M.S. Strano, J.N. Coleman, Liquid exfoliation of layered materials. Science 340, 1226419 (2013). https://doi.org/10.1126/science.1226419
S. Mao, H. Pu, J. Chen, Graphene oxide and its reduction: modeling and experimental progress. RSC Adv. 2, 2643–2662 (2012). https://doi.org/10.1039/C2RA00663D
K.R. Paton, E. Varrla, C. Backes, R.J. Smith, U. Khan et al., Scalable production of large quantities of defect-free few-layer graphene by shear exfoliation in liquids. Nat. Mater. 13, 624–630 (2014). https://doi.org/10.1038/nmat3944
S. Bellani, E. Petroni, A.E. Del Rio Castillo, N. Curreli, B. Martín-García et al., Scalable production of graphene inks via wet-jet milling exfoliation for screen-printed micro-supercapacitors. Adv. Funct. Mater. 29, 1807659 (2019). https://doi.org/10.1002/adfm.201807659
Y. Shin, S. Vranic, X. Just-Baringo, S.M. Gali, T. Kisby et al., Stable, concentrated, biocompatible, and defect-free graphene dispersions with positive charge. Nanoscale 12, 12383–12394 (2020). https://doi.org/10.1039/D0NR02689A
F. Tehrani, M. Beltrán-Gastélum, K. Sheth, A. Karajic, L. Yin et al., Laser-induced graphene composites for printed, stretchable, and wearable electronics. Adv. Mater. Technol. 4, 1900162 (2019). https://doi.org/10.1002/admt.201900162
N. Wei, L. Yu, Z. Sun, Y. Song, M. Wang et al., Scalable salt-templated synthesis of nitrogen-doped graphene nanosheets toward printable energy storage. ACS Nano 13, 7517–7526 (2019). https://doi.org/10.1021/acsnano.9b03157
M. Yi, Z. Shen, A review on mechanical exfoliation for the scalable production of graphene. J. Mater. Chem. A 3, 11700–11715 (2015). https://doi.org/10.1039/C5TA00252D
M. Lotya, P.J. King, U. Khan, S. De, J.N. Coleman, High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 4, 3155–3162 (2010). https://doi.org/10.1021/nn1005304
F. Torrisi, T. Hasan, W. Wu, Z. Sun, A. Lombardo et al., Inkjet-printed graphene electronics. ACS Nano 6, 2992–3006 (2012). https://doi.org/10.1021/nn2044609
A.V. Tyurnina, I. Tzanakis, J. Morton, J. Mi, K. Porfyrakis et al., Ultrasonic exfoliation of graphene in water: a key parameter study. Carbon 168, 737–747 (2020). https://doi.org/10.1016/j.carbon.2020.06.029
K. Manna, L. Wang, K.J. Loh, W.-H. Chiang, Printed strain sensors using graphene nanosheets prepared by water-assisted liquid phase exfoliation. Adv. Mater. Interfaces 6, 1900034 (2019). https://doi.org/10.1002/admi.201900034
T.S. Tran, S.J. Park, S.S. Yoo, T.-R. Lee, T. Kim, High shear-induced exfoliation of graphite into high quality graphene by Taylor–Couette flow. RSC Adv. 6, 12003–12008 (2016). https://doi.org/10.1039/C5RA22273G
J.-M. Jeong, S.B. Jin, H.J. Park, S.H. Park, H. Jeon et al., Large-scale fast fluid dynamic processes for the syntheses of 2D nanohybrids of metal nanoparticle-deposited boron nitride nanosheet and their glycolysis of poly(ethylene terephthalate). Adv. Mater. Interfaces 7, 2000599 (2020). https://doi.org/10.1002/admi.202000599
J.H. Yoon, S.-M. Kim, Y. Eom, J.M. Koo, H.-W. Cho et al., Extremely fast self-healable bio-based supramolecular polymer for wearable real-time sweat-monitoring sensor. ACS Appl. Mater. Interfaces 11, 46165–46175 (2019). https://doi.org/10.1021/acsami.9b16829
J.H. Yoon, S.-M. Kim, H.J. Park, Y.K. Kim, D.X. Oh et al., Highly self-healable and flexible cable-type pH sensors for real-time monitoring of human fluids. Biosnes. Bioelectron. 150, 111946 (2020). https://doi.org/10.1016/j.bios.2019.111946
J.-M. Jeong, H.G. Kang, H.-J. Kim, S.B. Hong, H. Jeon et al., Hydraulic power manufacturing for highly scalable and stable 2D nanosheet dispersions and their film electrode application. Adv. Funct. Mater. 28, 1802952 (2018). https://doi.org/10.1002/adfm.201802952
J.A. Robinson, C.P. Puls, N.E. Staley, J.P. Stitt, M.A. Fanton et al., Raman topography and strain uniformity of large-area epitaxial graphene. Nano Lett. 9, 964–968 (2009). https://doi.org/10.1021/nl802852p
Y. Hao, Y. Wang, L. Wang, Z. Ni, Z. Wang et al., Probing layer number and stacking order of few-layer graphene by raman spectroscopy. Small 6, 195–200 (2010). https://doi.org/10.1002/smll.200901173
C.V. Gomez, T. Tene, M. Guevara, G.T. Usca, D. Colcha et al., Preparation of few-layer graphene dispersions from hydrothermally expanded graphite. Appl. Sci. 9, 2539 (2019). https://doi.org/10.3390/app9122539
N. Karim, M. Zhang, S. Afroj, V. Koncherry, P. Potluri et al., Graphene-based surface heater for de-icing applications. RSC Adv. 8, 16815–16823 (2018). https://doi.org/10.1039/C8RA02567C
S. Afroj, S. Tan, A.M. Abdelkader, K.S. Novoselov, N. Karim, Highly conductive, scalable, and machine washable graphene-based e-textiles for multifunctional wearable electronic applications. Adv. Funct. Mater. 30, 2000293 (2020). https://doi.org/10.1002/adfm.202000293
H. Jeon, J.-M. Jeong, H.G. Kang, H.-J. Kim, J. Park et al., Scalable water-based production of highly conductive 2D nanosheets with ultrahigh volumetric capacitance and rate capability. Adv. Energy Mater. 8, 1800227 (2018). https://doi.org/10.1002/aenm.201800227
S.B. Hong, J.-M. Jeong, H.G. Kang, D. Seo, Y. Cha et al., Fast and scalable hydrodynamic synthesis of MnO2/defect-free graphene nanocomposites with high rate capability and long cycle life. ACS Appl. Mater. Interfaces 10, 35250–35259 (2018). https://doi.org/10.1021/acsami.8b12894
B. Alfano, T. Polichetti, M. Mauriello, M.L. Miglietta, F. Ricciardella et al., Modulating the sensing properties of graphene through an eco-friendly metal-decoration process. Sens. Actuat. B 222, 1032–1042 (2016). https://doi.org/10.1016/j.snb.2015.09.008
K. Arapov, G. Bex, R. Hendriks, E. Rubingh, R. Abbel et al., Conductivity enhancement of binder-based graphene inks by photonic annealing and subsequent compression rolling. Adv. Eng. Mater. 18, 1234–1239 (2016). https://doi.org/10.1002/adem.201500646
S. Roy, M. David-Pur, Y. Hanein, Carbon nanotube-based ion selective sensors for wearable applications. ACS Appl. Mater. Interfaces 9, 35169–35177 (2017). https://doi.org/10.1021/acsami.7b07346
A.J. Bandodkar, D. Molinnus, O. Mirza, T. Guinovart, J.R. Windmiller et al., Epidermal tattoo potentiometric sodium sensors with wireless signal transduction for continuous non-invasive sweat monitoring. Biosens. Bioelectron. 54, 603–609 (2014). https://doi.org/10.1016/j.bios.2013.11.039
W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen et al., Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature 529, 509–514 (2016). https://doi.org/10.1038/nature16521
A. Alizadeh, A. Burns, R. Lenigk, R. Gettings, J. Ashe et al., A wearable patch for continuous monitoring of sweat electrolytes during exertion. Lab Chip 18, 2632–2641 (2018). https://doi.org/10.1039/C8LC00510A
M. McCaul, A. Porter, R. Barrett, P. White, F. Stroiescu et al., Wearable platform for real-time monitoring of sodium in sweat. ChemPhysChem 19, 1531–1536 (2018). https://doi.org/10.1002/cphc.201701312
G. Liu, C. Ho, N. Slappey, Z. Zhou, S.E. Snelgrove et al., A wearable conductivity sensor for wireless real-time sweat monitoring. Sens. Actuat. B 227, 35–42 (2016). https://doi.org/10.1016/j.snb.2015.12.034
B. Ma, J. Chi, C. Xu, Y. Ni, C. Zhao et al., Wearable capillary microfluidics for continuous perspiration sensing. Talanta 212, 120786 (2020). https://doi.org/10.1016/j.talanta.2020.120786
M. Parrilla, I. Ortiz-Gómez, R. Cánovas, A. Salinas-Castillo, M. Cuartero et al., Wearable potentiometric ion patch for on-body electrolyte monitoring in sweat: toward a validation strategy to ensure physiological relevance. Anal. Chem. 91, 8644–8651 (2019). https://doi.org/10.1021/acs.analchem.9b02126
T. Glennon, C. O’Quigley, M. McCaul, G. Matzeu, S. Beirne et al., “Sweatch”: a wearable platform for harvesting and analysing sweat sodium content. Electroanalysis 28, 1283–1289 (2016). https://doi.org/10.1002/elan.201600106
G. Matzeu, C. O’Quigley, E. McNamara, C. Zuliani, C. Fay et al., An integrated sensing and wireless communications platform for sensing sodium in sweat. Anal. Methods 8, 64–71 (2016). https://doi.org/10.1039/C5AY02254A