Highly Anisotropic GeSe Nanosheets for Phototransistors with Ultrahigh Photoresponsivity

Advanced Science - Tập 5 Số 8 - 2018
Xing Zhou1, Xiaozong Hu1, Bao Jin1, Jing Yu1, Kailang Liu1, Huiqiao Li1, Tianyou Zhai1
1State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan 430074, P. R. China

Tóm tắt

Abstract2D GeSe possesses black phosphorous‐analog‐layered structure and shows excellent environmental stability, as well as highly anisotropic in‐plane properties. Additionally, its high absorption efficiency in the visible range and high charge carrier mobility render it promising for applications in optoelectronics. However, most reported GeSe‐based photodetectors show frustrating performance especially in photoresponsivity. Herein, a 2D GeSe‐based phototransistor with an ultrahigh photoresponsivity is demonstrated. Its optimized photoresponsivity can be up to ≈1.6 × 105 A W−1. This high responsivity can be attributed to the highly efficient light absorption and the enhanced photoconductive gain due to the existence of trap states. The exfoliated GeSe nanosheet is confirmed to be along the [001] (armchair direction) and [010] (zigzag direction) using transmission electron microscopy and anisotropic Raman characterizations. The angle‐dependent electric and photoresponsive performance is systematically explored. Notably, the GeSe‐based phototransistor shows strong polarization‐dependent photoresponse with a peak/valley ratio of 1.3. Furthermore, the charge carrier mobility along the armchair direction is measured to be 1.85 times larger than that along the zigzag direction.

Từ khóa


Tài liệu tham khảo

10.1038/ncomms8809

10.1021/acs.nanolett.5b03615

10.1021/acs.nanolett.7b01365

10.1038/nnano.2014.35

10.1021/acsnano.5b04036

10.1002/adma.201603723

10.1021/jacs.5b10685

10.1021/nl501658d

10.1021/acs.nanolett.5b04540

10.1002/advs.201700231

10.1021/nl5032293

10.1038/nmat4299

10.1021/jacs.7b06314

10.1063/1.4931459

10.1002/aelm.201700141

10.1021/acs.nanolett.5b02861

10.1023/A:1024724922435

10.1002/adma.200903719

10.1002/adma.201201855

10.1039/C5TC03667D

10.1002/adfm.201703858

10.1021/am402550s

10.1038/nnano.2013.100

10.1002/adma.201201909

10.1002/adfm.201600318

10.1021/nn500782n

10.1021/acsami.7b18370

10.1002/adma.201503873

10.1021/am404847d

10.1063/1.4926508

10.1063/1.4943139

10.1021/acs.jpcc.6b12059

10.1007/s40843-015-0107-5

10.1063/1.4866782

10.1021/acs.jpcc.6b01468

10.1039/C5NR07675G

10.1021/acsami.7b00782

10.1021/acsnano.6b08704

10.1002/adfm.201604799

Liu Z., 2018, Acta Phys. Chim. Sin., 34, 0001

10.1021/acsnano.6b04952

10.1038/s41467-017-02077-z

10.1002/adma.201505154

10.1038/srep22970

10.1002/adma.201703286

10.1360/N972016-01389

10.1021/nn300889c

10.1002/advs.201700323

10.1002/advs.201500287

10.1002/adfm.201701342

10.1002/adfm.201503789

10.1039/C5NR04174K

10.1039/C7NR03574H

10.1002/adfm.201500969

10.1002/adfm.201504408

10.1021/acs.nanolett.6b03119

10.1038/ncomms5458

10.1103/PhysRevB.96.245421

10.1038/nmat3687

10.1021/acsnano.7b04860