Higher-order error estimates for physics-informed neural networks approximating the primitive equations

Ruimeng Hu1,2, Quyuan Lin3,2, Alan Raydan2, Sui Tang2
1Department of Statistics and Applied Probability, University of California, Santa Barbara, USA
2Department of Mathematics, University of California, Santa Barbara, USA
3School of Mathematical and Statistical Sciences, Clemson University, Clemson, USA

Tóm tắt

Large-scale dynamics of the oceans and the atmosphere are governed by primitive equations (PEs). Due to the nonlinearity and nonlocality, the numerical study of the PEs is generally challenging. Neural networks have been shown to be a promising machine learning tool to tackle this challenge. In this work, we employ physics-informed neural networks (PINNs) to approximate the solutions to the PEs and study the error estimates. We first establish the higher-order regularity for the global solutions to the PEs with either full viscosity and diffusivity, or with only the horizontal ones. Such a result for the case with only the horizontal ones is new and required in the analysis under the PINNs framework. Then we prove the existence of two-layer tanh PINNs of which the corresponding training error can be arbitrarily small by taking the width of PINNs to be sufficiently wide, and the error between the true solution and its approximation can be arbitrarily small provided that the training error is small enough and the sample set is large enough. In particular, all the estimates are a priori, and our analysis includes higher-order (in spatial Sobolev norm) error estimates. Numerical results on prototype systems are presented to further illustrate the advantage of using the $$H^s$$ norm during the training.

Từ khóa


Tài liệu tham khảo

Adams, R.A., Fournier, J.J.F.: Sobolev spaces. Elsevier, Amsterdam (2003) Azérad, P., Guillén, F.: Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics. SIAM J. Math. Anal. 33(4), 847–859 (2001) Beale, J.T., Kato, T., Majda, A.: Remarks on the breakdown of smooth solutions for the 3-d Euler equations. Commun. Math. Phys. 94(1), 61–66 (1984) Biswas, A., Tian, J., Ulusoy, S.: Error estimates for deep learning methods in fluid dynamics. Numerische Mathematik 151(3), 753–777 (2022) Blumen, W.: Geostrophic adjustment. Rev. Geophys. 10(2), 485–528 (1972) Bousquet, A., Hong, Y., Temam, R., Tribbia, J.: Numerical simulations of the two-dimensional inviscid hydrostatic primitive equations with humidity and saturation. J. Sci. Comput. 83(2), 1–24 (2020) Brenier, Y.: Homogeneous hydrostatic flows with convex velocity profiles. Nonlinearity 12(3), 495 (1999) Brenier, Y.: Remarks on the derivation of the hydrostatic Euler equations. Bull. Sci. Math. 127(7), 585–595 (2003) Brzeźniak, Z., Slavík, J.: Well-posedness of the 3d stochastic primitive equations with multiplicative and transport noise. J. Differ. Equ. 296, 617–676 (2021) Cao, C., Titi, E.S.: Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics. Ann. Math. 245– 267 (2007) Cao, C., Ibrahim, S., Nakanishi, K., Titi, E.S.: Finite-time blowup for the inviscid primitive equations of oceanic and atmospheric dynamics. Commun. Math. Phys. 337(2), 473–482 (2015) Cao, C., Li, J., Titi, E.S.: Global well-posedness of the three-dimensional primitive equations with only horizontal viscosity and diffusion. Commun. Pure Appl. Math. 69(8), 1492–1531 (2016) Cao, C., Li, J., Titi, E.S.: Strong solutions to the 3d primitive equations with only horizontal dissipation: near h1 initial data. J. Funct. Anal. 272(11), 4606–4641 (2017) Cao, C., Li, J., Titi, E.S.: Global well-posedness of the 3d primitive equations with horizontal viscosity and vertical diffusivity. Phys. D: Nonlinear Phenomena 412, 132606 (2020) Cao, C., Lin, Q., Titi, E.S.: On the well-posedness of reduced 3 d primitive geostrophic adjustment model with weak dissipation. J. Math. Fluid Mech. 22, 1–34 (2020) Charney, J.: The use of the primitive equations of motion in numerical prediction. Tellus 7(1), 22–26 (1955) Chen, C., Liu, H., Beardsley, R.C.: An unstructured grid, finite-volume, three-dimensional, primitive equations ocean model: application to coastal ocean and estuaries. J. Atmosp. Ocean. Technol. 20(1), 159–186 (2003) Chen, Q., Shiue, M.-C., Temam, R., Tribbia, J.: Numerical approximation of the inviscid 3d primitive equations in a limited domain. ESAIM: Math. Modell. Numer. Anal. 46(3), 619–646 (2012) Collot, C., Ibrahim, S., Lin, Q.: Stable singularity formation for the inviscid primitive equations (2021). arXiv preprint arXiv:2112.09759 Cuomo, S., Di Cola, V. S., Giampaolo, F., Rozza, G., Raissi, M., Piccialli, F.: Scientific machine learning through physics-informed neural networks: where we are and what’s next (2022). arXiv preprint arXiv:2201.05624 Czarnecki, W. M, Osindero, S., Jaderberg, M., Swirszcz, G., Pascanu, R.: Sobolev training for neural networks. Adv. Neural Inform. Process. Syst. 30 (2017) Debussche, A., Glatt-Holtz, N., Temam, R.: Local martingale and pathwise solutions for an abstract fluids model. Phys. D Nonlinear Phenomena 240(14–15), 1123–1144 (2011) Debussche, A., Glatt-Holtz, N., Temam, R., Ziane, M.: Global existence and regularity for the 3d stochastic primitive equations of the ocean and atmosphere with multiplicative white noise. Nonlinearity 25(7), 2093 (2012) De Ryck, T., Jagtap, A.D, Mishra, S.: Error estimates for physics-informed neural networks approximating the Navier-Stokes equations. IMA J. Numer. Anal. (2023) De Ryck, T., Mishra, S.: Error analysis for physics informed neural networks (pinns) approximating kolmogorov pdes (2021). arXiv preprint arXiv:2106.14473 De Ryck, T., Mishra, S.: Generic bounds on the approximation error for physics-informed (and) operator learning (2022). arXiv preprint arXiv:2205.11393 De Ryck, T., Lanthaler, S., Mishra, S.: On the approximation of functions by tanh neural networks. Neural Netw. 143, 732–750 (2021) Dissanayake, M.W.M.G., Phan-Thien, N.: Neural-network-based approximations for solving partial differential equations. Commun. Numer. Methods Eng. 10(3), 195–201 (1994) Furukawa, K., Giga, Y., Hieber, M., Hussein, A., Kashiwabara, T., Wrona, M.: Rigorous justification of the hydrostatic approximation for the primitive equations by scaled Navier–Stokes equations. Nonlinearity 33(12), 6502 (2020) Gerard-Varet, D., Masmoudi, N., Vicol, V.: Well-posedness of the hydrostatic Navier–Stokes equations. Anal. PDE 13(5), 1417–1455 (2020) Ghoul, T.E., Ibrahim, S., Lin, Q., Titi, E.S.: On the effect of rotation on the life-span of analytic solutions to the 3d inviscid primitive equations. Arch. Ration. Mech. Anal. 1– 60 (2022) Gill, A.: Adjustment under gravity in a rotating channel. J. Fluid Mech. 77(3), 603–621 (1976) Gill, A.E., Adrian, E.: Atmosphere-ocean dynamics, p. 30. Academic press, Cambridge (1982) Glatt-Holtz, N., Temam, R.: Pathwise solutions of the 2-d stochastic primitive equations. Appl. Math. Optim. 63(3), 401–433 (2011) Glatt-Holtz, N., Ziane, M.: The stochastic primitive equations in two space dimensions with multiplicative noise. Disc. Cont. Dyn. Syst. B 10(4), 801 (2008) Grenier, E.: On the derivation of homogeneous hydrostatic equations. ESAIM Math. Model. Numer. Anal. 33(5), 965–970 (1999) Han-Kwan, D., Nguyen, T.T.: Ill-posedness of the hydrostatic Euler and singular Vlasov equations. Arch. Ration. Mech. Anal. 221(3), 1317–1344 (2016) Hermann, A.J., Owens, W.B.: Energetics of gravitational adjustment for mesoscale chimneys. J. Phys. Oceanogr. 23(2), 346–371 (1993) Hieber, M., Kashiwabara, T.: Global strong well-posedness of the three dimensional primitive equations in \(L^p\)-spaces. Arch. Ration. Mech. Anal. 221(3), 1077–1115 (2016) Hieber, M., Hussein, A., Saal, M.: The primitive equations with stochastic wind driven boundary conditions: global strong well-posedness in critical spaces (2020). arXiv preprint arXiv:2009.09449 Holton, J.R.: An introduction to dynamic meteorology. Am. J. Phys. 41(5), 752–754 (1973) Hu, R., Lin, Q.: Local martingale solutions and pathwise uniqueness for the three-dimensional stochastic inviscid primitive equations. Anal. Comput. Stoch. Part. Differ. Equ. 1–49 (2022) Hu, R., Lin, Q.: Pathwise solutions for stochastic hydrostatic euler equations and hydrostatic Navier–Stokes equations under the local rayleigh condition (2023). arXiv preprint arXiv:2301.07810 Ibrahim, S., Lin, Q., Titi, E.S.: Finite-time blowup and ill-posedness in sobolev spaces of the inviscid primitive equations with rotation. J. Differ. Equ. 286, 557–577 (2021) Ju, N.: The global attractor for the solutions to the 3d viscous primitive equations. Disc. Cont. Dyn. Syst. 17(1), 159–179 (2006) Ju, N.: Global uniform boundedness of solutions to viscous 3d primitive equations with physical boundary conditions, Indiana Univ. Math. J. 69, 1763–1784 (2020) Karniadakis, G.E., Kevrekidis, I.G., Lu, L., Perdikaris, P., Wang, S., Yang, Liu: Physics-informed machine learning. Nat. Rev. Phys. 3(6), 422–440 (2021) Klainerman, S., Majda, A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34(4), 481–524 (1981) Kobelkov, G.M.: Existence of a solution “in the large’’ for the 3d large-scale ocean dynamics equations. Comptes Rendus Mathematique 343(4), 283–286 (2006) Korn, P.: Strong solvability of a variational data assimilation problem for the primitive equations of large-scale atmosphere and ocean dynamics. J. Nonlinear Sci. 31(3), 1–53 (2021) Krishnamupti, T.N., Bounoua, L.: An introduction to numerical weather prediction techniques. CRC Press, Boca Raton (2018) Kukavica, I., Ziane, M.: On the regularity of the primitive equations of the ocean. Nonlinearity 20(12), 2739 (2007) Kukavica, I., Temam, R., Vicol, V.C., Ziane, M.: Local existence and uniqueness for the hydrostatic Euler equations on a bounded domain. J. Differ. Equ. 250(3), 1719–1746 (2011) Kukavica, I., Masmoudi, N., Vicol, V., Wong, T.K.: On the local well-posedness of the prandtl and hydrostatic Euler equations with multiple monotonicity regions. SIAM J. Math. Anal. 46(6), 3865–3890 (2014) Kuo, A.C., Polvani, L.M.: Time-dependent fully nonlinear geostrophic adjustment. J. Phys. Oceanogr. 27(8), 1614–1634 (1997) Lagaris, I.E., Likas, A., Fotiadis, D.I.: Artificial neural networks for solving ordinary and partial differential equations. IEEE Trans. Neural Netw. 9(5), 987–1000 (1998) Lagaris, I.E., Likas, A.C., Papageorgiou, D.G.: Neural-network methods for boundary value problems with irregular boundaries. IEEE Trans. Neural Netw 11(5), 1041–1049 (2000) Li, J., Titi, E.S.: The primitive equations as the small aspect ratio limit of the Navier–Stokes equations: rigorous justification of the hydrostatic approximation. J. Math. Pures Appl. 124, 30–58 (2019) Li, J., Edriss S, T., Guozhi, Y.: The primitive equations approximation of the anisotropic horizontally viscous 3d Navier–Stokes equations. J. Differ. Equ. 306, 492–524 (2022) Lin, Q., Liu, X., Titi, E.S.: On the effect of fast rotation and vertical viscosity on the lifespan of the \(3 d \) primitive equations. J. Math. Fluid Mech. 24, 1–44 (2022) Liu, J.-G., Wang, C.: A fourth order numerical method for the primitive equations formulated in mean vorticity. Commun. Comput. Phys. 4, 26–55 (2008) Lu, L., Meng, X., Mao, Z., Karniadakis, G.E.: DeepXDE: a deep learning library for solving differential equations. SIAM Rev. 63(1), 208–228 (2021) Masmoudi, N., Wong, T.K.: On the h s theory of hydrostatic Euler equations. Arch. Ration. Mech. Anal. 204(1), 231–271 (2012) Mishra, S., Molinaro, R.: Estimates on the generalization error of physics-informed neural networks for approximating a class of inverse problems for pdes. IMA J. Numer. Anal. 42(2), 981–1022 (2022) Mishra, S., Molinaro, R.: Estimates on the generalization error of physics-informed neural networks for approximating pdes. IMA J. Numer. Anal. 43(1), 1–43 (2022) Paicu, M., Zhang, P., Zhang, Z.: On the hydrostatic approximation of the Navier–Stokes equations in a thin strip. Adv. Math. 372, 107293 (2020) Pei, Y.: Continuous data assimilation for the 3d primitive equations of the ocean (2018). arXiv preprint arXiv:1805.06007 Plougonven, R., Zeitlin, V.: Lagrangian approach to geostrophic adjustment of frontal anomalies in a stratified fluid. Geophys. Astrophys. Fluid Dyn. 99(2), 101–135 (2005) Raissi, M., Karniadakis, G.E.: Hidden physics models: machine learning of nonlinear partial differential equations. J. Comput. Phys. 357, 125–141 (2018) Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019) Renardy, M.: Ill-posedness of the hydrostatic euler and Navier–Stokes equations. Arch. Ration. Mech. Anal. 194(3), 877–886 (2009) Rossby, C.-G.: On the mutual adjustment of pressure and velocity distributions in certain simple current systems, ii. J. Mar. Res 1(3), 239–263 (1938) Saal, M., Slavík, J.: Stochastic primitive equations with horizontal viscosity and diffusivity (2021). arXiv preprint arXiv:2109.14568 Samelson, R., Temam, R., Wang, C., Wang, S.: Surface pressure poisson equation formulation of the primitive equations: numerical schemes. SIAM J. Numer. Anal. 41(3), 1163–1194 (2003) Shen, J., Wang, S.: A fast and accurate numerical scheme for the primitive equations of the atmosphere. SIAM J. Numer. Anal. 36(3), 719–737 (1999) Sirignano, J., Spiliopoulos, K.: Dgm: a deep learning algorithm for solving partial differential equations. J. Comput. Phys. 375, 1339–1364 (2018) Slavík, J.: Large and moderate deviations principles and central limit theorem for the stochastic 3d primitive equations with gradient-dependent noise. J. Theor. Prob. 1– 46 (2021) Smagorinsky, J.: General circulation experiments with the primitive equations: I. the basic experiment. Mon. Weather Rev. 91(3), 99–164 (1963) Temam, R.: Navier–stokes equations: theory and numerical analysis. American Mathematical Soc. 343 (2001) Wang, C., Li, S., He, D., Wang, L.: Is \( l^2\) physics-informed loss always suitable for training physics-informed neural network? (2022). arXiv preprint arXiv:2206.02016 Wong, T.K.: Blowup of solutions of the hydrostatic euler equations. Proc. Am. Math. Soc. 143(3), 1119–1125 (2015)