Higher and lower supramolecular orders for the design of self-assembled heterochiral tripeptide hydrogel biomaterials

Journal of Materials Chemistry B - Tập 3 Số 41 - Trang 8123-8132
Silvia Marchesan1,2,3,4,5, Katie E. Styan6,7,8, Christopher D. Easton6,7,8, Lynne J. Waddington6,7,8, Attilio V. Vargiu9,10,11,4,12
134127 Trieste
2Center of Excellence for Nanostructured Materials
3Chemical and Pharmaceutical Sciences Department
4Italy
5University of Trieste,
6Australia
7CSIRO Manufacturing Flagship
8Clayton
909042 Monserrato (CA)
10Cittadella Universitaria
11Department of Physics
12University of Cagliari

Tóm tắt

The use ofd- orl-amino acids allows for a high or low supramolecular order and stability to design self-assembled peptide hydrogels.

Từ khóa


Tài liệu tham khảo

Cabral, 2014, Adv. Drug Delivery Rev., 74, 35, 10.1016/j.addr.2014.06.003

Kaushik, 2014, Expert Opin. Drug Delivery, 11, 1635, 10.1517/17425247.2014.933803

Dasgupta, 2013, RSC Adv., 3, 9117, 10.1039/c3ra40234g

Kuang, 2014, Angew. Chem., Int. Ed., 53, 8104, 10.1002/anie.201402216

Marchesan, 2014, Recent Pat. Nanomed., 4, 77, 10.2174/1877912305666150213001402

Adams, 2011, Macromol. Biosci., 11, 160, 10.1002/mabi.201000316

Awhida, 2015, J. Colloid Interface Sci., 455, 24, 10.1016/j.jcis.2015.05.032

Draper, 2015, Chem. Commun., 51, 6595, 10.1039/C5CC01334H

Pappas, 2015, Angew. Chem., Int. Ed., 54, 8119, 10.1002/anie.201500867

Shi, 2014, PLoS One, 9, e106968, 10.1371/journal.pone.0106968

Zhang, 2014, Chem. Commun., 50, 12873, 10.1039/C4CC05826G

Marchesan, 2013, BioNanoScience, 3, 21, 10.1007/s12668-012-0074-1

FrederixPim, 2015, Nat. Chem., 7, 30, 10.1038/nchem.2122

Marchesan, 2012, Chem. Commun., 48, 2195, 10.1039/C2CC16609G

Marchesan, 2012, Nanoscale, 4, 6752, 10.1039/c2nr32006a

Marchesan, 2014, Nanoscale, 6, 5172, 10.1039/C3NR06752A

Pappas, 2015, Chem. Commun., 51, 8465, 10.1039/C5CC02049B

Melchionna, 2015, Curr. Top. Med. Chem.

Salick, 2007, J. Am. Chem. Soc., 129, 14793, 10.1021/ja076300z

Marchesan, 2013, Biomaterials, 34, 3678, 10.1016/j.biomaterials.2013.01.096

Liu, 2012, J. Mater. Chem., 22, 17311, 10.1039/c2jm32772d

Castelletto, 2011, Chem. Commun., 47, 12470, 10.1039/c1cc15493a

Li, 2012, J. Am. Chem. Soc., 135, 542, 10.1021/ja310019x

Marvin 2.5.9, 2012, ChemAxon (http://www.chemaxon.com)

Humphrey, 1996, J. Mol. Graphics, 14, 33, 10.1016/0263-7855(96)00018-5

Jorgensen, 1983, J. Chem. Phys., 79, 926, 10.1063/1.445869

Lindorff-Larsen, 2010, Proteins, 78, 1950, 10.1002/prot.22711

Kar, 2008, Protein Sci., 17, 1086, 10.1110/ps.083441308

Morel, 2010, J. Phys. Chem. B, 114, 4010, 10.1021/jp9102993

Sasahara, 2013, Biophys. Rev., 5, 259, 10.1007/s12551-012-0098-3

Badea, 2012, Polym. Degrad. Stab., 97, 346, 10.1016/j.polymdegradstab.2011.12.013

Wimley, 2004, J. Mol. Biol., 342, 703, 10.1016/j.jmb.2004.06.093

Reches, 2006, Phys. Biol., 3, S10, 10.1088/1478-3975/3/1/S02

Jacob, 2015, Biomaterials, 54, 97, 10.1016/j.biomaterials.2015.03.002

Shivu, 2013, Biochemistry, 52, 5176, 10.1021/bi400625v

de Groot, 2007, Biophys. J., 92, 1732, 10.1529/biophysj.106.096677

Castelletto, 2009, J. Phys. Chem. B, 113, 9978, 10.1021/jp902860a

Wu, 2009, J. Mol. Biol., 394, 627, 10.1016/j.jmb.2009.09.056

Sabate, 2013, Chem. Commun., 49, 5745, 10.1039/c3cc42040j

Kuznetsova, 2012, PLoS One, 7, e30724, 10.1371/journal.pone.0030724

Amdursky, 2012, Acc. Chem. Res., 45, 1548, 10.1021/ar300053p

K. Morris and L.Serpell, in Amyloid Proteins, ed. E. M. Sigurdsson, M. Calero and M. Gasset, Humana Press, 2012, pp. 121–135

Sawaya, 2007, Nature, 447, 453, 10.1038/nature05695

Iglesias, 2015, Curr. Top. Med. Chem.

Krysmann, 2008, Biochemistry, 47, 4597, 10.1021/bi8000616