High-yield production of graphene by liquid-phase exfoliation of graphite

Nature Nanotechnology - Tập 3 Số 9 - Trang 563-568 - 2008
Yenny Hernández1, Valeria Nicolosi1, Mustafa Lotya1, Fiona M. Blighe1, Zhenyu Sun1, Sukanta De1, I.T. McGovern1, B. N. Holland1, Michele T. Byrne2, Yurii K. Gun’ko3, John J. Boland3, Peter N. Nirmalraj3, Georg S. Duesberg3, S. Krishnamurthy3, Robbie Goodhue4, J. L. Hutchison5, Vittorio Scardaci6, Andrea C. Ferrari6, Jonathan N. Coleman3
1School of Physics, Trinity College Dublin, Dublin 2, Ireland
2School of Chemistry, Trinity College Dublin, Dublin 2, Ireland
3Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN), Trinity College Dublin, Dublin 2, Ireland
4Department of Geology, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
5Department of Materials, University of Oxford, Parks Road, OX1 3PH Oxford, UK
6Engineering Department, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).

Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

Pisana, S. et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature Mater. 6, 198–201 (2007).

Blake, P. et al. Graphene-based liquid crystal device. Nano Lett. 8, 1704–1708 (2008).

Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).

Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).

Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 1, 016602 (2008).

Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nature Nanotech. 3, 491–495 (2008).

Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

Ohta, T. et al. Morphology of graphene thin film growth on SiC(0001). New J. Phys. 023034 (2008).

Zhou, S. Y. et al. Origin of the energy bandgap in epitaxial graphene—Reply. Nature Mater. 7, 259–260 (2008).

Marchini, S., Gunther, S. & Wintterlin, J. Scanning tunnelling microscopy of graphene on Ru(0001). Phys. Rev. B 76, 075429 (2007).

de Parga, A. L. V. et al. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett. 1, 056807 (2008).

Sutter, P. W., Flege, J.–I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nature Mater. 7, 406–411 (2008).

Pan, Y. et al. Millimetre-scale, highly ordered single crystalline graphene grown on Ru (0001) surface. ArXiv:0709.2858 (2008).

Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech. 3, 270–274 (2008).

Li, D. et al. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech. 3, 101–105 (2008).

Stankovich, S. et al. Graphene-based composite materials. Nature 442, 282–286 (2006).

Wang, X., Zhi, L. J. & Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008).

Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).

Jung, I. et al. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7, 3569–3575 (2007).

Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 30, 139–326 (1981).

Viculis, L. M., Mack, J. J. & Kaner, R. B. A chemical route to carbon nanoscrolls. Science 299, 1361–1361 (2003).

Chen, G. H. et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon 42, 753–759 (2004).

Li, X. L. et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).

Niyogi, S. et al. Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006).

Furtado, C. A. et al. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J. Am. Chem. Soc. 126, 6095–6105 (2004).

Giordani, S. et al. Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. J. Phys. Chem. B 110, 15708–15718 (2006).

Landi, B. J., Ruf, H. J., Worman, J. J. & Raffaelle, R. P. Effects of alkyl amide solvents on the dispersion of single-wall carbon nanotubes. J. Phys. Chem. B 108, 17089–17095 (2004).

Hasan, T. et al. Stabilization and ‘Debundling’ of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). J. Phys. Chem. C 111, 12594–12602 (2007).

Bergin, S. D. et al. Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone. Nanotechnology 18, 455705 (2007).

Bergin, S. D. et al. Towards solutions of SWNT in common solvents. Adv. Mater. 20, 1876–1881 (2007).

Abergel, D. S. L. & Fal'ko, V. I. Optical and magneto-optical far-infrared properties of bi-layer graphene. Phys. Rev. B 75, 155430 (2007).

Hildebrand, J. H., Prausnitz, J. M. & Scott, R. L. Regular and related solutions 1st edn (Van Nostrand Reinhold Company, New York, 1970).

Lyklema, J. The surface tension of pure liquids—thermodynamic components and corresponding states. Coll. Surf. A 156, 413–421 (1999).

Tsierkezos, N. G. & Filippou, A. C. Thermodynamic investigation of N,N-dimethylformamide/toluene binary mixtures in the temperature range from 278.15 to 293.15 K. J. Chem. Therm. 38, 952–961 (2006).

Benedict, L. X. et al. Microscopic determination of the interlayer binding energy in graphite. Chem. Phys. Lett. 286, 490–496 (1998).

Girifalco, L. A. & Good, R. J. A theory for the estimation of surface and interfacial energies. 1. Derivation and application to interfacial tension. J. Phys. Chem. 61, 904–909 (1957).

Hodak, M. & Girifalco, L. A. Fullerenes inside carbon nanotubes and multi-walled carbon nanotubes: optimum and maximum sizes. Chem. Phys. Lett. 350, 405–411 (2001).

Zacharia, R., Ulbricht, H. & Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 69, 155406 (2004).

Jeong, S. H. et al. Preparation of aligned carbon nanotubes with prescribed dimensions: Template synthesis and sonication cutting approach. Chem. Mater. 14, 1859–1862 (2002).

Meyer, J. C. et al. The structure of suspended graphene sheets. Nature 446, 60–63 (2007).

Meyer, J. C. et al. On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143, 101–109 (2007).

Horiuchi, S. et al. Carbon nanofilm with a new structure and property. Jpn J. Appl. Phys. Lett. 42, L1073–L1076 (2003).

Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

Blighe, F. M., Hernandez, Y., Blau, W. J. & Coleman, J. N. Observation of percolation-like scaling, far from the percolation threshold, in high volume fraction, high conductivity polymer–nanotube composite films. Adv. Mater. 19, 4443–4447 (2007).