High-yield production of graphene by liquid-phase exfoliation of graphite
Tóm tắt
Từ khóa
Tài liệu tham khảo
Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).
Novoselov, K. S. et al. Electric field effect in atomically thin carbon films. Science 306, 666–669 (2004).
Zhang, Y. B., Tan, Y. W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).
Pisana, S. et al. Breakdown of the adiabatic Born–Oppenheimer approximation in graphene. Nature Mater. 6, 198–201 (2007).
Novoselov, K. S. et al. Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 10451–10453 (2005).
Bolotin, K. I. et al. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146, 351–355 (2008).
Morozov, S. V. et al. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 1, 016602 (2008).
Du, X., Skachko, I., Barker, A. & Andrei, E. Y. Approaching ballistic transport in suspended graphene. Nature Nanotech. 3, 491–495 (2008).
Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).
Ohta, T. et al. Morphology of graphene thin film growth on SiC(0001). New J. Phys. 023034 (2008).
Zhou, S. Y. et al. Origin of the energy bandgap in epitaxial graphene—Reply. Nature Mater. 7, 259–260 (2008).
Marchini, S., Gunther, S. & Wintterlin, J. Scanning tunnelling microscopy of graphene on Ru(0001). Phys. Rev. B 76, 075429 (2007).
de Parga, A. L. V. et al. Periodically rippled graphene: Growth and spatially resolved electronic structure. Phys. Rev. Lett. 1, 056807 (2008).
Sutter, P. W., Flege, J.–I. & Sutter, E. A. Epitaxial graphene on ruthenium. Nature Mater. 7, 406–411 (2008).
Pan, Y. et al. Millimetre-scale, highly ordered single crystalline graphene grown on Ru (0001) surface. ArXiv:0709.2858 (2008).
Eda, G., Fanchini, G. & Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nature Nanotech. 3, 270–274 (2008).
Li, D. et al. Processable aqueous dispersions of graphene nanosheets. Nature Nanotech. 3, 101–105 (2008).
Wang, X., Zhi, L. J. & Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 8, 323–327 (2008).
Stankovich, S. et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007).
Jung, I. et al. Simple approach for high-contrast optical imaging and characterization of graphene-based sheets. Nano Lett. 7, 3569–3575 (2007).
Dresselhaus, M. S. & Dresselhaus, G. Intercalation compounds of graphite. Adv. Phys. 30, 139–326 (1981).
Viculis, L. M., Mack, J. J. & Kaner, R. B. A chemical route to carbon nanoscrolls. Science 299, 1361–1361 (2003).
Chen, G. H. et al. Preparation and characterization of graphite nanosheets from ultrasonic powdering technique. Carbon 42, 753–759 (2004).
Li, X. L. et al. Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319, 1229–1232 (2008).
Niyogi, S. et al. Solution properties of graphite and graphene. J. Am. Chem. Soc. 128, 7720–7721 (2006).
Furtado, C. A. et al. Debundling and dissolution of single-walled carbon nanotubes in amide solvents. J. Am. Chem. Soc. 126, 6095–6105 (2004).
Giordani, S. et al. Debundling of single-walled nanotubes by dilution: observation of large populations of individual nanotubes in amide solvent dispersions. J. Phys. Chem. B 110, 15708–15718 (2006).
Landi, B. J., Ruf, H. J., Worman, J. J. & Raffaelle, R. P. Effects of alkyl amide solvents on the dispersion of single-wall carbon nanotubes. J. Phys. Chem. B 108, 17089–17095 (2004).
Hasan, T. et al. Stabilization and ‘Debundling’ of single-wall carbon nanotube dispersions in N-methyl-2-pyrrolidone (NMP) by polyvinylpyrrolidone (PVP). J. Phys. Chem. C 111, 12594–12602 (2007).
Bergin, S. D. et al. Exfoliation in ecstasy: liquid crystal formation and concentration-dependent debundling observed for single-wall nanotubes dispersed in the liquid drug γ-butyrolactone. Nanotechnology 18, 455705 (2007).
Bergin, S. D. et al. Towards solutions of SWNT in common solvents. Adv. Mater. 20, 1876–1881 (2007).
Abergel, D. S. L. & Fal'ko, V. I. Optical and magneto-optical far-infrared properties of bi-layer graphene. Phys. Rev. B 75, 155430 (2007).
Hildebrand, J. H., Prausnitz, J. M. & Scott, R. L. Regular and related solutions 1st edn (Van Nostrand Reinhold Company, New York, 1970).
Lyklema, J. The surface tension of pure liquids—thermodynamic components and corresponding states. Coll. Surf. A 156, 413–421 (1999).
Tsierkezos, N. G. & Filippou, A. C. Thermodynamic investigation of N,N-dimethylformamide/toluene binary mixtures in the temperature range from 278.15 to 293.15 K. J. Chem. Therm. 38, 952–961 (2006).
Benedict, L. X. et al. Microscopic determination of the interlayer binding energy in graphite. Chem. Phys. Lett. 286, 490–496 (1998).
Girifalco, L. A. & Good, R. J. A theory for the estimation of surface and interfacial energies. 1. Derivation and application to interfacial tension. J. Phys. Chem. 61, 904–909 (1957).
Hodak, M. & Girifalco, L. A. Fullerenes inside carbon nanotubes and multi-walled carbon nanotubes: optimum and maximum sizes. Chem. Phys. Lett. 350, 405–411 (2001).
Zacharia, R., Ulbricht, H. & Hertel, T. Interlayer cohesive energy of graphite from thermal desorption of polyaromatic hydrocarbons. Phys. Rev. B 69, 155406 (2004).
Jeong, S. H. et al. Preparation of aligned carbon nanotubes with prescribed dimensions: Template synthesis and sonication cutting approach. Chem. Mater. 14, 1859–1862 (2002).
Meyer, J. C. et al. On the roughness of single- and bi-layer graphene membranes. Solid State Commun. 143, 101–109 (2007).
Horiuchi, S. et al. Carbon nanofilm with a new structure and property. Jpn J. Appl. Phys. Lett. 42, L1073–L1076 (2003).
Ferrari, A. C. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).