High-velocity air-water flows downstream of sluice gates including selection of optimum phase-detection probe

International Journal of Multiphase Flow - Tập 116 - Trang 203-220 - 2019
Stefan Felder1, Benjamin Hohermuth2, Robert M. Boes2
1Water Research Laboratory, School of Civil and Environmental Engineering, UNSW Sydney, 110 King St, Manly Vale, NSW 2093, Australia
2Laboratory of Hydraulics, Hydrology and Glaciology VAW, ETH Zurich, Switzerland

Tài liệu tham khảo

Arreguin, 1986, Natural air entrainment in high velocity flows Auel, 2014, Turbulence characteristics in supercritical open channel flows: effects of Froude number and aspect ratio, J. Hydraul. Eng., 140, 381, 10.1061/(ASCE)HY.1943-7900.0000841 Bai, 2017, Experimental investigation of air–water flow properties of offset aerators, J. Hydraul. Eng., 144, 10.1061/(ASCE)HY.1943-7900.0001397 Bertola, 2018, A physical study of air-water flow in planar plunging water jets with large inflow disturbance, Int. J. Multiph. Flow, 100, 155, 10.1016/j.ijmultiphaseflow.2017.12.015 Boes, 2000, Zweiphasenströmung und Energieumsetzung auf Grosskaskaden" (‘Two-phase flow and energy dissipation on stepped cascades‘) (Ph.D. thesis) Boes, 2003, Hydraulic design of stepped spillways, J. Hydraul. Eng., 129, 671, 10.1061/(ASCE)0733-9429(2003)129:9(671) Boes, 2003, Two-phase flow characteristics of stepped spillways, J. Hydraul. Eng., 129, 661, 10.1061/(ASCE)0733-9429(2003)129:9(661) Borges, 2010, Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in airwater flows, Experiments in Fluids, 48, 17, 10.1007/s00348-009-0699-1 Cain, 1978 Cain, 1981, Measurements of self-aerated flow on a spillway, J. Hydraul. Div., 107, 1425, 10.1061/JYCEAJ.0005761 Cartellier, 1991, Local phase detection probes in fluid/fluid two-phase flows, Rev. Sci. Instrum., 62, 279, 10.1063/1.1142117 Cartellier, 1996, Sondes optiques: innovations sur un capteur classique, La Houille Blanche, 1, 120, 10.1051/lhb/1996015 Chanson, 1988 Chanson, 1997 Chanson, 1997, Air bubble entrainment in open channels. flow structure and bubble size distributions, Int. J. Multiph. Flow, 23, 193, 10.1016/S0301-9322(96)00063-8 Chanson, 2009, Turbulent air-water flows in hydraulic structures: dynamic similarity and scale effects, Environ. Fluid Mech., 9, 125, 10.1007/s10652-008-9078-3 Chanson, 2013, Hydraulics of aerated flows: qui pro quo?, J. Hydraul. Res., 51, 223, 10.1080/00221686.2013.795917 Chanson, 2000, Experimental study of the air-water shear flow in a hydraulic jump, Int. J. Multiph. Flow, 26, 583, 10.1016/S0301-9322(99)00016-6 Chanson, 2007, Advanced post-processing and correlation analyses in high-velocity air-water flows, Environ. Fluid Mech., 7, 495, 10.1007/s10652-007-9038-3 Chanson, 1996 Chanson, 2002, Air-water flows down stepped chutes: turbulence and flow structure observations, Int. J. Multiph. Flow, 28, 1737, 10.1016/S0301-9322(02)00089-7 Cummings, 1997, Air entrainment in the developing flow region of plunging jets. part 2: experimental, J. Fluids Eng. Trans. ASME, 119, 603, 10.1115/1.2819287 Ervine, 1998, Air entrainment in hydraulic structures: a review, Proc. Inst. Civil Eng. Water Marit. Energy, 130, 142, 10.1680/iwtme.1998.30973 Felder, 2013 Felder, S. (2018). “StefanFelder/Air-water-flow-data-analysis-software-for-double-tip-phase-detection-intrusive-probes (Version v1.0). Zenodo. 10.5281/zenodo.2448251. Felder, 2009, Turbulence, dynamic similarity and scale effects in high-velocity free-surface flows above a stepped chute, Exp. Fluids, 47, 1, 10.1007/s00348-009-0628-3 Felder, 2014, Triple decomposition technique in air-water flows: application to instationary flows on a stepped spillway, Int. J. Multiph. Flow, 83, 139, 10.1016/j.ijmultiphaseflow.2013.09.006 Felder, 2015, Phase-detection probe measurements in high-velocity free-surface flows including a discussion of key sampling parameters, Exp. Therm. Fluid Sci., 61, 66, 10.1016/j.expthermflusci.2014.10.009 Felder, 2016, Simple design criterion for residual energy on embankment dam stepped spillways, J. Hydraul. Eng., 142, 04015062, 10.1061/(ASCE)HY.1943-7900.0001107 Felder, 2016, Air–water flow characteristics in high-velocity free-surface flows with 50% void fraction, Int. J. Multiph. Flow, 85, 186, 10.1016/j.ijmultiphaseflow.2016.06.004 Felder, 2017, Scale effects in microscopic air-water flow properties in high-velocity free-surface flows, Exp. Therm. Fluid Sci., 83, 19, 10.1016/j.expthermflusci.2016.12.009 Felder, 2017, Comparative analyses of phase-detective intrusive probes in high-velocity air–water flows, Int. J. Multiph. Flow, 90, 88, 10.1016/j.ijmultiphaseflow.2016.12.009 Hohermuth, 2017, Air demand of high-head bottom outlets, 2956 Hunt, 2014, Simplistic design methods for moderate-sloped stepped chutes, J. Hydraul. Eng., 140, 10.1061/(ASCE)HY.1943-7900.0000938 Killen, 1968 Kobus, 1984, Scale effects in modelling hydraulic structures Kramer, 2005, Air transport in chute flows, Int. J. Multiph. Flow, 31, 1181, 10.1016/j.ijmultiphaseflow.2005.06.006 Kramer, 2006, Development of air concentration on chute spillways, J. Hydraul. Eng., 132, 908, 10.1061/(ASCE)0733-9429(2006)132:9(908) Kramer, 2019, Towards reliable turbulence estimations with phase-detection probes: an adaptive window cross-correlation technique, Exp. Fluids, 60 Lamb, 1950 Matos, 2000, Hydraulic design of stepped spillways over RCC dams, 187 Montes, 1997, Irrotational flow and real fluid effects under planar sluice gates, J. Hydraul. Eng., 123, 219, 10.1061/(ASCE)0733-9429(1997)123:3(219) Murzyn, 2005, Optical fibre probe measurements of bubbly flow in hydraulic jumps, Int. J. Multiph. Flow, 31, 141, 10.1016/j.ijmultiphaseflow.2004.09.004 Neal, 1963, A high resolution resistivity probe for determination of local void properties in gas–liquid flows, AIChE J., 9, 490, 10.1002/aic.690090415 Ohtsu, 1994, Characteristics of supercritical flow below sluice gate, J. Hydraul. Eng., 120, 332, 10.1061/(ASCE)0733-9429(1994)120:3(332) Ohtsu, 2004, Flow characteristics of skimming flows in stepped channels, J. Hydraul. Eng., 130, 860, 10.1061/(ASCE)0733-9429(2004)130:9(860) Pagliara, 2010, Self-aeration and friction over rock chutes in uniform flow conditions, J. Hydraul. Eng., 136, 959, 10.1061/(ASCE)HY.1943-7900.0000270 Pfister, 2014, Two-phase air–water flows: scale effects in physical modeling, J. Hydrodyn. Ser. B (English Ed.), 26, 291, 10.1016/S1001-6058(14)60032-9 Pfister, 2010, Chute aerators. I: air transport characteristics, J. Hydraul. Eng., 136, 352, 10.1061/(ASCE)HY.1943-7900.0000189 Pfister, 2014, Trajectories and air flow features of ski jump-generated jets, J. Hydraul. Res., 52, 336, 10.1080/00221686.2013.875072 Rabben, 1984 Rajaratnam, 1965, The Hydraulic Jump as a Wall Jet, J. Hydraul. Div., 91, 107, 10.1061/JYCEAJ.0001299 Roth, 1999, Underflow of standard sluice gate, Exp. Fluids, 27, 339, 10.1007/s003480050358 Serizawa, 1975, Turbulence structure of air–water bubbly flows –I. Measuring techniques, Int. J. Multiph. Flow, 2, 221, 10.1016/0301-9322(75)90011-7 Sharma, 1976, Air-entrainment in high head gated conduits, J. Hydraul. Div., 102, 1629, 10.1061/JYCEAJ.0004650 Speerli, 1999, Discussion to ‘Irrotational flow and real fluid effects under planar sluice gates’ by J.S. Montes, J. Hydraul. Eng., 125, 208, 10.1061/(ASCE)0733-9429(1999)125:2(208) Speerli, 2000, Air-water flow in bottom outlets, Can. J. Civ. Eng., 27, 454, 10.1139/l99-087 Straub, 1958, Experiments on selfaerated flow in open channels, J. Hydraul. Div., 84, 1890 Takahashi, 2012, Aerated flow characteristics of skimming flow over stepped chutes, J. Hydraul. Res., 50, 427, 10.1080/00221686.2012.702859 Takahashi, 2017, Effects of inflows on air entrainment in hydraulic jumps below a gate, J. Hydraul. Res., 55, 259, 10.1080/00221686.2016.1238016 Thorwarth, 2008 US Army Corps of Engineers (USACE). Air demand – regulated outlet works. Hydraulic design criteria, 1964, sheet 050-1/2/3, 211-1/2, 212-1/2, 225–1. Valero, 2016, Development of the interfacial air layer in the non-aerated region of high-velocity spillway flows. Instabilities growth, entrapped air and influence on the self-aeration onset, Int. J. Multiph. Flow, 84, 66, 10.1016/j.ijmultiphaseflow.2016.04.012 Valero, 2018, Reformulating self-aeration in hydraulic structures: turbulent growth of free surface perturbations leading to air entrainment, Int. J. Multiph. Flow, 100, 127, 10.1016/j.ijmultiphaseflow.2017.12.011 Valero, 2018, Artificial neural networks and pattern recognition for air-water flow velocity estimation using a single-tip optical fibre probe, J. Hydroenviron. Res., 19, 150 Vischer, 1998 Volkart, 1980, The mechanism of air bubble entrainment in self-aerated flow, Int. J. Multiphase Flow, 6, 411, 10.1016/0301-9322(80)90003-8 Wang, 2019, Characterisation of transverse turbulent motion in quasi-two-dimensional aerated flow: application of four-point air-water flow measurements in hydraulic jump, Exp. Therm. Fluid Sci., 100, 222, 10.1016/j.expthermflusci.2018.09.004 Wang, 2014, An experimental study of turbulent two-phase flow in hydraulic jumps and application of a triple decomposition technique, Exp. Fluids, 55, 1775, 10.1007/s00348-014-1775-8 Wei, 2016, Development of self-aeration process for supercritical chute flows, Int. J. Multiph. Flow, 79, 172, 10.1016/j.ijmultiphaseflow.2015.11.003 Wood, 1991, Air entrainment in free-surface flows. Xi, 1988, Characteristics of self-aerated flow on steep chutes, 68 Zhang, 2017, Self-aeration in the rapidly- and gradually-varying flow regions of steep smooth and stepped spillways, Environ. Fluid Mech., 17, 27, 10.1007/s10652-015-9442-z Zhang, 2018, Air-water flow properties in stepped chutes with modified step and cavity geometries, Int. J. Multiph. Flow, 99, 423, 10.1016/j.ijmultiphaseflow.2017.11.009 Zhang, 2014, Mean and turbulent bubble velocities in free hydraulic jumps for small to intermediate Froude numbers, J. Hydraul. Eng., 140, 10.1061/(ASCE)HY.1943-7900.0000924