High-throughput functional profiling of the human fungal pathogen Candida albicans genome

Research in Microbiology - Tập 174 - Trang 104025 - 2023
Murielle Chauvel1, Sophie Bachellier-Bassi1, Anne-Marie Guérout2, Keunsook K. Lee3,4, Corinne Maufrais1,5, Emmanuelle Permal1,2,5, Juliana Pipoli Da Fonseca6, Sadri Znaidi1,7, Didier Mazel2, Carol A. Munro3, Christophe d’Enfert1, Melanie Legrand1
1Institut Pasteur, Université Paris Cité, INRAE USC2019, Unité Biologie et Pathogénicité Fongiques, F-75015 Paris, France
2Institut Pasteur, Université Paris Cité, UMR3525 CNRS, Unité Plasticité du Génome Bactérien, F-75015 Paris, France
3Institute of Medical Sciences, Foresterhill, Aberdeen AB25 2ZD, UK
4NGeneBio, 307 Daerung Post-tower 1, 288 Digital-ro, Guro-gu, Seoul 08390, Republic of Korea
5Institut Pasteur, Université Paris Cité, Hub de Bioinformatique, F-75015 Paris, France
6Institut Pasteur, Université Paris Cité, Plate-forme Technologique Biomics, Centre de Ressources et Recherches Technologiques (C2RT), F-75015 Paris, France
7Laboratoire de Microbiologie Moléculaire, Vaccinologie et Développement Biotechnologique, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis-Belvédère, Tunisia

Tài liệu tham khảo

Brown, 2012, Tackling human fungal infections, Science, 336, 647, 10.1126/science.1222236 Brown, 2012, Hidden killers: human fungal infections, Sci Transl Med, 4, 165rv13, 10.1126/scitranslmed.3004404 Skrzypek, 2017, The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data, Nucleic Acids Res, 45, D592, 10.1093/nar/gkw924 Legrand, 2018, Generating genomic platforms to study Candida albicans pathogenesis, Nucleic Acids Res, 46, 6935, 10.1093/nar/gky594 Chauvel, 2012, A versatile overexpression strategy in the pathogenic yeast Candida albicans: identification of regulators of morphogenesis and fitness, PLoS One, 7, 10.1371/journal.pone.0045912 Loll-Krippleber, 2015, A FACS-optimized screen identifies regulators of genome stability in Candida albicans, Eukaryot Cell, 14, 311, 10.1128/EC.00286-14 Jaitly, 2022, A phylogenetically-restricted essential cell cycle progression factor in the human pathogen Candida albicans, Nat Commun, 13, 4256, 10.1038/s41467-022-31980-3 Mazurkiewicz, 2006, Signature-tagged mutagenesis: barcoding mutants for genome-wide screens, Nat Rev Genet, 7, 929, 10.1038/nrg1984 Oh, 2011, Strain engineering, methods and protocols, Methods Mol Biol, 765, 225, 10.1007/978-1-61779-197-0_14 Smith, 2009, Quantitative phenotyping via deep barcode sequencing, Genome Res, 19, 1836, 10.1101/gr.093955.109 Cabral, 2014, Targeted changes of the cell wall proteome influence Candida albicans ability to form single- and multi-strain biofilms, PloS Pathog, 10, 10.1371/journal.ppat.1004542 Znaidi, 2018, Systematic gene overexpression in Candida albicans identifies a regulator of early adaptation to the mammalian gut, Cell Microbiol, 20, 10.1111/cmi.12890 Delarze, 2020, Identification and characterization of mediators of fluconazole tolerance in Candida albicans, Front Microbiol, 11, 10.3389/fmicb.2020.591140 Xu, 2009, Design of 240,000 orthogonal 25mer DNA barcode probes, Proc Natl Acad Sci, 106, 2289, 10.1073/pnas.0812506106 Muzzey, 2013, Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure, Genome Biol, 14, R97, 10.1186/gb-2013-14-9-r97 Butler, 2009, Evolution of pathogenicity and sexual reproduction in eight Candida genomes, Nature, 459, 657, 10.1038/nature08064 Dujon, 2004, Genome evolution in yeasts, Nature, 430, 35, 10.1038/nature02579 Giaever, 2002, Functional profiling of the Saccharomyces cerevisiae genome, Nature, 418, 387, 10.1038/nature00935 Watkins, 2009, A Rapid high-throughput method for mapping ribonucleoproteins (RNPs) on human pre-mRNA, JoVE, 10.3791/1622-v Guérout, 2013, Characterization of the phd-doc and ccd toxin-antitoxin cassettes from Vibrio superintegrons, J Bacteriol, 195, 2270, 10.1128/JB.01389-12 Cabral, 2012, Host-fungus interactions, methods and protocols, Methods Mol Biol, 845, 227, 10.1007/978-1-61779-539-8_15 Noble, 2005, Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans, Eukaryot Cell, 4, 298, 10.1128/EC.4.2.298-309.2005 Walther, 2008, PCR-based gene targeting in Candida albicans, Nat Protoc, 3, 1414, 10.1038/nprot.2008.137 Kritikos, 2017, A tool named Iris for versatile high-throughput phenotyping in microorganisms, Nat Microbiol, 2, 10.1038/nmicrobiol.2017.14 Anders, 2010, Differential expression analysis for sequence count data, Genome Biol, 11, R106, 10.1186/gb-2010-11-10-r106 Robinson, 2013, Design and analysis of bar-seq experiments, G3 Genes Genomes Genetics, 4, 11, 10.1534/g3.113.008565 Walhout, 2000, [34] GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes, Methods Enzymol, 328, 10.1016/S0076-6879(00)28419-X Gillum, 1984, Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations, Mol Gen Genet, 198, 179, 10.1007/BF00328721 Carlisle, 2009, Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence, Proc Natl Acad Sci USA, 106, 599, 10.1073/pnas.0804061106 Zeidler, 2009, UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans, Fems Yeast Res, 9, 126, 10.1111/j.1567-1364.2008.00459.x Banerjee, 2008, UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence, Mol Biol Cell, 19, 1354, 10.1091/mbc.e07-11-1110 Chung, 2010, Candida albicans PHO81 is required for the inhibition of hyphal development by farnesoic acid, Febs Lett, 584, 4639, 10.1016/j.febslet.2010.10.026 Rai, 2022, Overexpression approaches to advance understanding of Candida albicans, Mol Microbiol, 117, 589, 10.1111/mmi.14818