High-throughput functional profiling of the human fungal pathogen Candida albicans genome
Tài liệu tham khảo
Brown, 2012, Tackling human fungal infections, Science, 336, 647, 10.1126/science.1222236
Brown, 2012, Hidden killers: human fungal infections, Sci Transl Med, 4, 165rv13, 10.1126/scitranslmed.3004404
Skrzypek, 2017, The Candida Genome Database (CGD): incorporation of Assembly 22, systematic identifiers and visualization of high throughput sequencing data, Nucleic Acids Res, 45, D592, 10.1093/nar/gkw924
Legrand, 2018, Generating genomic platforms to study Candida albicans pathogenesis, Nucleic Acids Res, 46, 6935, 10.1093/nar/gky594
Chauvel, 2012, A versatile overexpression strategy in the pathogenic yeast Candida albicans: identification of regulators of morphogenesis and fitness, PLoS One, 7, 10.1371/journal.pone.0045912
Loll-Krippleber, 2015, A FACS-optimized screen identifies regulators of genome stability in Candida albicans, Eukaryot Cell, 14, 311, 10.1128/EC.00286-14
Jaitly, 2022, A phylogenetically-restricted essential cell cycle progression factor in the human pathogen Candida albicans, Nat Commun, 13, 4256, 10.1038/s41467-022-31980-3
Mazurkiewicz, 2006, Signature-tagged mutagenesis: barcoding mutants for genome-wide screens, Nat Rev Genet, 7, 929, 10.1038/nrg1984
Oh, 2011, Strain engineering, methods and protocols, Methods Mol Biol, 765, 225, 10.1007/978-1-61779-197-0_14
Smith, 2009, Quantitative phenotyping via deep barcode sequencing, Genome Res, 19, 1836, 10.1101/gr.093955.109
Cabral, 2014, Targeted changes of the cell wall proteome influence Candida albicans ability to form single- and multi-strain biofilms, PloS Pathog, 10, 10.1371/journal.ppat.1004542
Znaidi, 2018, Systematic gene overexpression in Candida albicans identifies a regulator of early adaptation to the mammalian gut, Cell Microbiol, 20, 10.1111/cmi.12890
Delarze, 2020, Identification and characterization of mediators of fluconazole tolerance in Candida albicans, Front Microbiol, 11, 10.3389/fmicb.2020.591140
Xu, 2009, Design of 240,000 orthogonal 25mer DNA barcode probes, Proc Natl Acad Sci, 106, 2289, 10.1073/pnas.0812506106
Muzzey, 2013, Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure, Genome Biol, 14, R97, 10.1186/gb-2013-14-9-r97
Butler, 2009, Evolution of pathogenicity and sexual reproduction in eight Candida genomes, Nature, 459, 657, 10.1038/nature08064
Dujon, 2004, Genome evolution in yeasts, Nature, 430, 35, 10.1038/nature02579
Giaever, 2002, Functional profiling of the Saccharomyces cerevisiae genome, Nature, 418, 387, 10.1038/nature00935
Watkins, 2009, A Rapid high-throughput method for mapping ribonucleoproteins (RNPs) on human pre-mRNA, JoVE, 10.3791/1622-v
Guérout, 2013, Characterization of the phd-doc and ccd toxin-antitoxin cassettes from Vibrio superintegrons, J Bacteriol, 195, 2270, 10.1128/JB.01389-12
Cabral, 2012, Host-fungus interactions, methods and protocols, Methods Mol Biol, 845, 227, 10.1007/978-1-61779-539-8_15
Noble, 2005, Strains and strategies for large-scale gene deletion studies of the diploid human fungal pathogen Candida albicans, Eukaryot Cell, 4, 298, 10.1128/EC.4.2.298-309.2005
Walther, 2008, PCR-based gene targeting in Candida albicans, Nat Protoc, 3, 1414, 10.1038/nprot.2008.137
Kritikos, 2017, A tool named Iris for versatile high-throughput phenotyping in microorganisms, Nat Microbiol, 2, 10.1038/nmicrobiol.2017.14
Anders, 2010, Differential expression analysis for sequence count data, Genome Biol, 11, R106, 10.1186/gb-2010-11-10-r106
Robinson, 2013, Design and analysis of bar-seq experiments, G3 Genes Genomes Genetics, 4, 11, 10.1534/g3.113.008565
Walhout, 2000, [34] GATEWAY recombinational cloning: application to the cloning of large numbers of open reading frames or ORFeomes, Methods Enzymol, 328, 10.1016/S0076-6879(00)28419-X
Gillum, 1984, Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations, Mol Gen Genet, 198, 179, 10.1007/BF00328721
Carlisle, 2009, Expression levels of a filament-specific transcriptional regulator are sufficient to determine Candida albicans morphology and virulence, Proc Natl Acad Sci USA, 106, 599, 10.1073/pnas.0804061106
Zeidler, 2009, UME6 is a crucial downstream target of other transcriptional regulators of true hyphal development in Candida albicans, Fems Yeast Res, 9, 126, 10.1111/j.1567-1364.2008.00459.x
Banerjee, 2008, UME6, a novel filament-specific regulator of Candida albicans hyphal extension and virulence, Mol Biol Cell, 19, 1354, 10.1091/mbc.e07-11-1110
Chung, 2010, Candida albicans PHO81 is required for the inhibition of hyphal development by farnesoic acid, Febs Lett, 584, 4639, 10.1016/j.febslet.2010.10.026
Rai, 2022, Overexpression approaches to advance understanding of Candida albicans, Mol Microbiol, 117, 589, 10.1111/mmi.14818