High-throughput computational screening of Cu-MOFs with open metal sites for efficient C2H2/C2H4 separation
Tài liệu tham khảo
Matsuda, 2005, Nature, 436, 238, 10.1038/nature03852
Zhao, 2018, Adv. Mater., 30, 1705189, 10.1002/adma.201705189
Ruta, 2008, J. Phys. Chem. C, 112, 17814, 10.1021/jp806603f
Tong, 2018, Green Energy Environ., 3, 107, 10.1016/j.gee.2017.09.004
Lupu, 2019, Int. J. Hydrogen Energy, 44, 12715, 10.1016/j.ijhydene.2018.10.099
Corgnale, 2019, Appl. Energy, 250, 333, 10.1016/j.apenergy.2019.05.055
Zhang, 2019, Inorg. Chem., 58, 13782, 10.1021/acs.inorgchem.9b01240
Zhao, 2019, J. Solid State Chem., 277, 139, 10.1016/j.jssc.2019.05.051
Wang, 2018, Green Energy Environ., 3, 191, 10.1016/j.gee.2018.03.001
Wu, 2019, J. Mater. Chem. A, 7, 25254, 10.1039/C9TA07278K
Xu, 2019, Dalton Trans., 48, 9225, 10.1039/C9DT01677E
Liu, 2017, J. Phys. Chem. C, 121, 13249, 10.1021/acs.jpcc.7b04465
Ye, 2019, J. Am. Chem. Soc., 141, 4130, 10.1021/jacs.9b00232
Lv, 2017, J. Am. Chem. Soc., 139, 211, 10.1021/jacs.6b09463
Lan, 2020, Green Energy Environ.
Jia, 2018, ChemMedChem, 13, 400, 10.1002/cmdc.201800019
Chen, 2018, Dalton Trans., 47, 2114, 10.1039/C7DT04116K
Hong, 2017, ACS Appl. Mater. Interfaces, 9, 29374, 10.1021/acsami.7b10420
Xiang, 2011, Nat. Commun., 2, 204, 10.1038/ncomms1206
Yang, 2014, Nat. Chem., 7, 121, 10.1038/nchem.2114
Bloch, 2012, Science, 335, 1606, 10.1126/science.1217544
Jin, 2018, Inorg. Chem., 57, 6218, 10.1021/acs.inorgchem.8b00971
Li, 2017, Adv. Mater., 29, 1704210, 10.1002/adma.201704210
Das, 2012, J. Am. Chem. Soc., 134, 8703, 10.1021/ja302380x
Zhang, 2011, CrystEngComm, 13, 5983, 10.1039/c1ce05437f
Wen, 2015, Chem. Commun., 51, 5610, 10.1039/C4CC09999K
Lv, 2019, J. Am. Chem. Soc., 141, 10283, 10.1021/jacs.9b02947
Li, 2008, AIChE J., 54, 269, 10.1002/aic.11362
Decoste, 2013, J. Mater. Chem. A, 1, 11922, 10.1039/c3ta12497e
Simon, 2015, Energy Environ. Sci., 8, 1190, 10.1039/C4EE03515A
Lan, 2017, CrystEngComm, 19, 4920, 10.1039/C7CE00118E
Lan, 2019, J. Mater. Chem. A, 7, 12556, 10.1039/C9TA01752F
Lan, 2018, Nat. Commun., 9, 5274, 10.1038/s41467-018-07720-x
Qiao, 2018, J. Mater. Chem. A, 6, 18898, 10.1039/C8TA04939D
Zhang, 2018, AIChE J., 64, 1389, 10.1002/aic.16025
Chung, 2016, Sci. Adv., 2, e1600909, 10.1126/sciadv.1600909
Krishna, 2017, RSC Adv., 7, 35724, 10.1039/C7RA07363A
Willems, 2012, Microporous Mesoporous Mater., 149, 134, 10.1016/j.micromeso.2011.08.020
Myers, 2002, Langmuir, 18, 10261, 10.1021/la026399h
Fan, 2013, Colloids Surf. A, 437, 42, 10.1016/j.colsurfa.2012.12.015
Rappé, 1992, J. Am. Chem. Soc., 114, 10024, 10.1021/ja00051a040
Wells, 2014, J. Phys. Chem. C, 119, 456, 10.1021/jp510415h
Frisch, 2010
Vlugt, 2008, J. Chem. Theory. Comput., 4, 1107, 10.1021/ct700342k
Yang, 2013, Chem. Rev., 113, 8261, 10.1021/cr400005f
Mayo, 1990, J. Phys. Chem., 94, 8897, 10.1021/j100389a010
Kulkarni, 2016, J. Phys. Chem. C, 120, 23044, 10.1021/acs.jpcc.6b07493
He, 2012, Energy Environ. Sci., 5, 9107, 10.1039/c2ee22858k
Sun, 2010, Chem. Commun., 46, 1329, 10.1039/b920995f
Lin, 2006, Angew. Chem. Int. Ed., 45, 7358, 10.1002/anie.200601991
Díaz-Gallifa, 2015, CrystEngComm, 17, 5081, 10.1039/C5CE00326A
Altintas, 2018, ACS Appl. Mater. Interfaces, 10, 3668, 10.1021/acsami.7b18037
Wang, 2007, Cryst. Growth Des., 7, 1154, 10.1021/cg070055d
Wen, 2010, CrystEngComm, 12, 1238, 10.1039/B919381M
Ko, 2015, Bull. Korean. Chem. Soc., 36, 327, 10.1002/bkcs.10087
Chang, 2015, Chem. Commun., 51, 14789, 10.1039/C5CC05850C
Chen, 2017, Inorg. Chem. Front., 4, 960, 10.1039/C7QI00063D
Zhang, 2018, Ind. Eng. Chem. Res., 57, 7266, 10.1021/acs.iecr.8b00950
Cui, 2016, Science, 353, 141, 10.1126/science.aaf2458
Hu, 2015, Nat. Commun., 6, 7328, 10.1038/ncomms8328
Yang, 2019, Chem. Commun., 55, 5001, 10.1039/C9CC00976K
Grabowski, 2001, J. Phys. Chem. A, 105, 10739, 10.1021/jp011819h
Allinger, 1976, Adv. Phys. Org. Chem., 13, 1
Mitxelena, 2016, J. Chem. Phys., 144, 204108, 10.1063/1.4951685
Chang, 2019, ACS Omega, 4, 14511, 10.1021/acsomega.9b01740