High-throughput computational screening and design of nanoporous materials for methane storage and carbon dioxide capture

Green Energy and Environment - Tập 3 - Trang 107-119 - 2018
Minman Tong1, Youshi Lan2, Qingyuan Yang2,3, Chongli Zhong2,3
1School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, 221116, China
2Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
3State Key Laboratory of Organic−Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China

Tài liệu tham khảo

Earth's CO2. http://co2now.org/ (Accessed 7 May 2017). Chu, 2009, Science, 325, 1599, 10.1126/science.1181637 Haszeldine, 2009, Science, 325, 1647, 10.1126/science.1172246 Yang, 2008, J. Environ. Sci., 20, 14, 10.1016/S1001-0742(08)60002-9 Sumida, 2012, Chem. Rev., 112, 724, 10.1021/cr2003272 Furukawa, 2009, J. Am. Chem. Soc., 131, 8875, 10.1021/ja9015765 Lu, 2012, Angew. Chem. Int. Ed., 51, 7480, 10.1002/anie.201202176 Bae, 2013, Energy Environ. Sci., 6, 128, 10.1039/C2EE23337A Stephenson, 1993 Alvarez, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 6435, 10.1073/pnas.1202407109 Yeh, 2007, Energy Policy, 35, 5865, 10.1016/j.enpol.2007.06.012 Menon, 1998, J. Porous Mater., 5, 43, 10.1023/A:1009673830619 Makal, 2012, Chem. Soc. Rev., 41, 7761, 10.1039/c2cs35251f Simon, 2015, Energy Environ. Sci., 8, 1190, 10.1039/C4EE03515A Mellot-Draznieks, 2000, Angew. Chem., Int. Ed., 39, 2270, 10.1002/1521-3773(20000703)39:13<2270::AID-ANIE2270>3.0.CO;2-A Colón, 2014, Chem. Soc. Rev., 43, 5735, 10.1039/C4CS00070F Jain, 2013, Apl. Mater., 1, 011002, 10.1063/1.4812323 Allen, 2002, Acta Crystallogr., Sect. B Struct. Sci., 58, 380, 10.1107/S0108768102003890 Moghadam, 2017, Chem. Mater., 29, 2618, 10.1021/acs.chemmater.7b00441 Goldsmith, 2013, Chem. Mater., 25, 3373, 10.1021/cm401978e Chung, 2014, Chem. Mater., 26, 6185, 10.1021/cm502594j Watanabe, 2012, Langmuir, 28, 14114, 10.1021/la301915s Li, 2016, Langmuir, 32, 10368, 10.1021/acs.langmuir.6b02803 Baburin, 2010, CrystEngComm, 12, 2809, 10.1039/b926717d Lin, 2012, Nat. Mater., 11, 633, 10.1038/nmat3336 Hayashi, 2007, Nat. Mater., 6, 501, 10.1038/nmat1927 Lewis, 2009, CrystEngComm, 11, 2272, 10.1039/b912997a Willems, 2012, Microporous Mesoporous Mater., 149, 134, 10.1016/j.micromeso.2011.08.020 Wilmer, 2012, Nat. Chem., 4, 83, 10.1038/nchem.1192 M. Tong, Y. Lan, Q. Yang, C. Zhong, Chem. Eng. Sci. 168 456–464 Bureekaew, 2013, CrystEngComm, 15, 1551, 10.1039/c2ce26473k Lukose, 2010, Beilstein J. Nanotechnol., 1, 60, 10.3762/bjnano.1.8 Lukose, 2013, J. Mol. Model., 19, 2143, 10.1007/s00894-012-1671-1 Martin, 2014, J. Phys. Chem. C, 118, 23790, 10.1021/jp507152j Martin, 2014, J. Am. Chem. Soc., 136, 5006, 10.1021/ja4123939 Baerlocher, 2007 International Zeolite Association. http://www.iza-online.org/. Matito-Martos, 2014, Phys. Chem. Chem. Phys., 16, 19884, 10.1039/C4CP00109E Haldoupis, 2010, J. Am. Chem. Soc., 132, 7528, 10.1021/ja1023699 Van Heest, 2012, J. Phys. Chem. C, 116, 13183, 10.1021/jp302808j Düren, 2007, J. Phys. Chem. C, 111, 15350, 10.1021/jp074723h Myers, 2002, Langmuir, 18, 10261, 10.1021/la026399h Sevick, 1988, J. Chem. Phys., 88, 1198, 10.1063/1.454720 Sarkisov, 2011, Mol. Simul., 37, 1248, 10.1080/08927022.2011.592832 First, 2011, Phys. Chem. Chem. Phys., 13, 17339, 10.1039/c1cp21731c Alexandrov, 2011, CrystEngComm, 13, 3947, 10.1039/c0ce00636j Yang, 2013, Chem. Rev., 113, 8261, 10.1021/cr400005f Mayo, 1990, J. Phys. Chem., 94, 8897, 10.1021/j100389a010 Rappé, 1992, J. Am. Chem. Soc., 114, 10024, 10.1021/ja00051a040 Makrodimitris, 2001, J. Phys. Chem. B, 105, 777, 10.1021/jp002866x Skoulidas, 2002, J. Phys. Chem. B, 106, 5058, 10.1021/jp014279x García-Sánchez, 2009, J. Phys. Chem. C, 113, 8814, 10.1021/jp810871f Dubbeldam, 2004, J. Phys. Chem. B, 108, 12301, 10.1021/jp0376727 Dubbeldam, 2004, Phys. Rev. Lett., 93, 088302, 10.1103/PhysRevLett.93.088302 Fang, 2016, Chem. Mater, 28, 3887, 10.1021/acs.chemmater.6b01132 Martin, 1999, J. Phys. Chem. B, 103, 4508, 10.1021/jp984742e Ma, 2008, J. Am. Chem. Soc., 130, 1012, 10.1021/ja0771639 Fernandez, 2013, J. Phys. Chem. C, 117, 7681, 10.1021/jp4006422 Bao, 2015, J. Phys. Chem. C, 119, 186, 10.1021/jp5123486 Mason, 2014, Chem. Sci., 5, 32, 10.1039/C3SC52633J Peng, 2013, J. Am. Chem. Soc., 135, 11887, 10.1021/ja4045289 O'Keeffe, 2008, Acc. Chem. Res., 41, 1782, 10.1021/ar800124u Xu, 2010, J. Phys. Chem. C, 114, 5035, 10.1021/jp910522h Haldoupis, 2012, J. Am. Chem. Soc., 134, 4313, 10.1021/ja2108239 Wilmer, 2012, J. Phys. Chem. Lett., 3, 2506, 10.1021/jz3008485 Kadantsev, 2013, J. Phys. Chem. Lett., 4, 3056, 10.1021/jz401479k Wilmer, 2012, Energy Environ. Sci., 5, 9849, 10.1039/c2ee23201d Fernandez, 2014, J. Phys. Chem. Lett., 5, 3056, 10.1021/jz501331m Chung, 2016, Sci. Adv., 2, 10.1126/sciadv.1600909 Faruque Hasan, 2013, Phys. Chem. Chem. Phys., 15, 17601, 10.1039/c3cp53627k Krishna, 2010, J. Membr. Sci., 360, 323, 10.1016/j.memsci.2010.05.032 Lin, 2012, Nat. Mater., 11, 633, 10.1038/nmat3336 Kim, 2013, J. Am. Chem. Soc., 135, 7545, 10.1021/ja400267g Kirklin, 2013, Adv. Energy Mater., 3, 252, 10.1002/aenm.201200593 Martsinovich, 2011, J. Phys. Chem. C, 115, 11781, 10.1021/jp2026847 Okimoto, 2009, Plos. Comput. Biol., 5, 10.1371/journal.pcbi.1000528 Cheng, 2015, J. Phys. Chem. Lett., 6, 283, 10.1021/jz502319n Toher, 2014, Phys. Rev. B, 90, 174107, 10.1103/PhysRevB.90.174107 Andersson, 2006, J. Catal., 239, 501, 10.1016/j.jcat.2006.02.016 Siderius, 2013, J. Phys. Chem. C, 117, 5861, 10.1021/jp400480q Yu, 2012, J. Chem. Phys., 137, 244102, 10.1063/1.4769879 Gomez-Gualdron, 2014, Chem. Mater., 26, 5632, 10.1021/cm502304e