High-throughput computational screening and design of nanoporous materials for methane storage and carbon dioxide capture
Tài liệu tham khảo
Earth's CO2. http://co2now.org/ (Accessed 7 May 2017).
Chu, 2009, Science, 325, 1599, 10.1126/science.1181637
Haszeldine, 2009, Science, 325, 1647, 10.1126/science.1172246
Yang, 2008, J. Environ. Sci., 20, 14, 10.1016/S1001-0742(08)60002-9
Sumida, 2012, Chem. Rev., 112, 724, 10.1021/cr2003272
Furukawa, 2009, J. Am. Chem. Soc., 131, 8875, 10.1021/ja9015765
Lu, 2012, Angew. Chem. Int. Ed., 51, 7480, 10.1002/anie.201202176
Bae, 2013, Energy Environ. Sci., 6, 128, 10.1039/C2EE23337A
Stephenson, 1993
Alvarez, 2012, Proc. Natl. Acad. Sci. U. S. A., 109, 6435, 10.1073/pnas.1202407109
Yeh, 2007, Energy Policy, 35, 5865, 10.1016/j.enpol.2007.06.012
Menon, 1998, J. Porous Mater., 5, 43, 10.1023/A:1009673830619
Makal, 2012, Chem. Soc. Rev., 41, 7761, 10.1039/c2cs35251f
Simon, 2015, Energy Environ. Sci., 8, 1190, 10.1039/C4EE03515A
Mellot-Draznieks, 2000, Angew. Chem., Int. Ed., 39, 2270, 10.1002/1521-3773(20000703)39:13<2270::AID-ANIE2270>3.0.CO;2-A
Colón, 2014, Chem. Soc. Rev., 43, 5735, 10.1039/C4CS00070F
Jain, 2013, Apl. Mater., 1, 011002, 10.1063/1.4812323
Allen, 2002, Acta Crystallogr., Sect. B Struct. Sci., 58, 380, 10.1107/S0108768102003890
Moghadam, 2017, Chem. Mater., 29, 2618, 10.1021/acs.chemmater.7b00441
Goldsmith, 2013, Chem. Mater., 25, 3373, 10.1021/cm401978e
Chung, 2014, Chem. Mater., 26, 6185, 10.1021/cm502594j
Watanabe, 2012, Langmuir, 28, 14114, 10.1021/la301915s
Li, 2016, Langmuir, 32, 10368, 10.1021/acs.langmuir.6b02803
Baburin, 2010, CrystEngComm, 12, 2809, 10.1039/b926717d
Lin, 2012, Nat. Mater., 11, 633, 10.1038/nmat3336
Hayashi, 2007, Nat. Mater., 6, 501, 10.1038/nmat1927
Lewis, 2009, CrystEngComm, 11, 2272, 10.1039/b912997a
Willems, 2012, Microporous Mesoporous Mater., 149, 134, 10.1016/j.micromeso.2011.08.020
Wilmer, 2012, Nat. Chem., 4, 83, 10.1038/nchem.1192
M. Tong, Y. Lan, Q. Yang, C. Zhong, Chem. Eng. Sci. 168 456–464
Bureekaew, 2013, CrystEngComm, 15, 1551, 10.1039/c2ce26473k
Lukose, 2010, Beilstein J. Nanotechnol., 1, 60, 10.3762/bjnano.1.8
Lukose, 2013, J. Mol. Model., 19, 2143, 10.1007/s00894-012-1671-1
Martin, 2014, J. Phys. Chem. C, 118, 23790, 10.1021/jp507152j
Martin, 2014, J. Am. Chem. Soc., 136, 5006, 10.1021/ja4123939
Baerlocher, 2007
International Zeolite Association. http://www.iza-online.org/.
Matito-Martos, 2014, Phys. Chem. Chem. Phys., 16, 19884, 10.1039/C4CP00109E
Haldoupis, 2010, J. Am. Chem. Soc., 132, 7528, 10.1021/ja1023699
Van Heest, 2012, J. Phys. Chem. C, 116, 13183, 10.1021/jp302808j
Düren, 2007, J. Phys. Chem. C, 111, 15350, 10.1021/jp074723h
Myers, 2002, Langmuir, 18, 10261, 10.1021/la026399h
Sevick, 1988, J. Chem. Phys., 88, 1198, 10.1063/1.454720
Sarkisov, 2011, Mol. Simul., 37, 1248, 10.1080/08927022.2011.592832
First, 2011, Phys. Chem. Chem. Phys., 13, 17339, 10.1039/c1cp21731c
Alexandrov, 2011, CrystEngComm, 13, 3947, 10.1039/c0ce00636j
Yang, 2013, Chem. Rev., 113, 8261, 10.1021/cr400005f
Mayo, 1990, J. Phys. Chem., 94, 8897, 10.1021/j100389a010
Rappé, 1992, J. Am. Chem. Soc., 114, 10024, 10.1021/ja00051a040
Makrodimitris, 2001, J. Phys. Chem. B, 105, 777, 10.1021/jp002866x
Skoulidas, 2002, J. Phys. Chem. B, 106, 5058, 10.1021/jp014279x
García-Sánchez, 2009, J. Phys. Chem. C, 113, 8814, 10.1021/jp810871f
Dubbeldam, 2004, J. Phys. Chem. B, 108, 12301, 10.1021/jp0376727
Dubbeldam, 2004, Phys. Rev. Lett., 93, 088302, 10.1103/PhysRevLett.93.088302
Fang, 2016, Chem. Mater, 28, 3887, 10.1021/acs.chemmater.6b01132
Martin, 1999, J. Phys. Chem. B, 103, 4508, 10.1021/jp984742e
Ma, 2008, J. Am. Chem. Soc., 130, 1012, 10.1021/ja0771639
Fernandez, 2013, J. Phys. Chem. C, 117, 7681, 10.1021/jp4006422
Bao, 2015, J. Phys. Chem. C, 119, 186, 10.1021/jp5123486
Mason, 2014, Chem. Sci., 5, 32, 10.1039/C3SC52633J
Peng, 2013, J. Am. Chem. Soc., 135, 11887, 10.1021/ja4045289
O'Keeffe, 2008, Acc. Chem. Res., 41, 1782, 10.1021/ar800124u
Xu, 2010, J. Phys. Chem. C, 114, 5035, 10.1021/jp910522h
Haldoupis, 2012, J. Am. Chem. Soc., 134, 4313, 10.1021/ja2108239
Wilmer, 2012, J. Phys. Chem. Lett., 3, 2506, 10.1021/jz3008485
Kadantsev, 2013, J. Phys. Chem. Lett., 4, 3056, 10.1021/jz401479k
Wilmer, 2012, Energy Environ. Sci., 5, 9849, 10.1039/c2ee23201d
Fernandez, 2014, J. Phys. Chem. Lett., 5, 3056, 10.1021/jz501331m
Chung, 2016, Sci. Adv., 2, 10.1126/sciadv.1600909
Faruque Hasan, 2013, Phys. Chem. Chem. Phys., 15, 17601, 10.1039/c3cp53627k
Krishna, 2010, J. Membr. Sci., 360, 323, 10.1016/j.memsci.2010.05.032
Lin, 2012, Nat. Mater., 11, 633, 10.1038/nmat3336
Kim, 2013, J. Am. Chem. Soc., 135, 7545, 10.1021/ja400267g
Kirklin, 2013, Adv. Energy Mater., 3, 252, 10.1002/aenm.201200593
Martsinovich, 2011, J. Phys. Chem. C, 115, 11781, 10.1021/jp2026847
Okimoto, 2009, Plos. Comput. Biol., 5, 10.1371/journal.pcbi.1000528
Cheng, 2015, J. Phys. Chem. Lett., 6, 283, 10.1021/jz502319n
Toher, 2014, Phys. Rev. B, 90, 174107, 10.1103/PhysRevB.90.174107
Andersson, 2006, J. Catal., 239, 501, 10.1016/j.jcat.2006.02.016
Siderius, 2013, J. Phys. Chem. C, 117, 5861, 10.1021/jp400480q
Yu, 2012, J. Chem. Phys., 137, 244102, 10.1063/1.4769879
Gomez-Gualdron, 2014, Chem. Mater., 26, 5632, 10.1021/cm502304e