High-throughput characterization of Lu-doped zirconia

Solid State Ionics - Tập 368 - Trang 115698 - 2021
Ruiyun Huang1, Erin Antono2, Bryce Meredig2, Gregory J. Mulholland2, Timothy C. Davenport1, Sossina M. Haile1
1Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
2Citrine Informatics, Redwood City, CA 94063, USA

Tài liệu tham khảo

Koinuma, 2004, Combinatorial solid-state chemistry of inorganic materials, Nat. Mater., 3, 429, 10.1038/nmat1157 Potyrailo, 2005, Role of high-throughput characterization tools in combinatorial materials science, Meas. Sci. Technol., 16, 1, 10.1088/0957-0233/16/1/001 Kilner, 2014, Materials for intermediate-temperature solid-oxide fuel cells, Vol 44, 365 Haile, 2003, Fuel cell materials and components, Acta Mater., 51, 5981, 10.1016/j.actamat.2003.08.004 Kharton, 2004, Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics, 174, 135, 10.1016/j.ssi.2004.06.015 Goodenough, 2003, Oxide-ion electrolytes, Annu. Rev. Mater. Res., 33, 91, 10.1146/annurev.matsci.33.022802.091651 Malavasi, 2010, Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features, Chem. Soc. Rev., 39, 4370, 10.1039/b915141a Antono Antono Möbius, 1965, Zeitsch. Chem., 5, 431 Arachi, 1999, Electrical conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) system, Solid State Ionics, 121, 133, 10.1016/S0167-2738(98)00540-2 Shannon, 1976, Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, 32, 751, 10.1107/S0567739476001551 Huang, 2018, Out-of-plane ionic conductivity measurement configuration for high-throughput experiments, ACS Comb. Sci., 20, 443, 10.1021/acscombsci.8b00037 Duan, 2013, High-throughput measurement of ionic conductivity in composition-spread thin films, ACS Comb. Sci., 15, 273, 10.1021/co4000375 Carvalho, 2012, Influence of titanium and lutetium on the persistent luminescence of ZrO2, Opt. Mater. Express, 2, 331, 10.1364/OME.2.000331 Fabrichnaya, 2010, Thermodynamic assessment of the ZrO2–Yb2O3–Al2O3 system, Calphad, 34, 206, 10.1016/j.calphad.2010.03.001 Martin, 1993, Neutron powder investigation of tetragonal and cubic stabilized zirconia, TZP and CSZ, at tempeature up to 1400 K, Acta Crystallogr. Sect. B-Struct. Sci.Cryst. Eng. Mat., 49, 403, 10.1107/S0108768192011297 Nishimura, 2021, Ion conductive character of low-yttria-content yttria-stabilized zirconia at low temperature, Jpn. J. Appl. Phys., 60, 6, 10.35848/1347-4065/abd6dc Usiskin, 2015, Probing the reaction pathway in (La0.8Sr0.2)0.95MnO3+δ using libraries of thin film microelectrodes, J. Mater. Chem. A, 3, 19330, 10.1039/C5TA02428E Haile, 1998, The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate, J. Mater. Res., 13, 1576, 10.1557/JMR.1998.0219 Souza, 2012, Ionic and electronic conductivity of nanostructured, Samaria-doped ceria, J. Electrochem. Soc., 159, K127, 10.1149/2.056205jes Nakamura, 1986, Defect structure, ionic conductivity, and diffusion in Yttria-stabilized zirconia and related oxide electrolytes with fluorite structure, J. Electrochem. Soc., 133, 1542, 10.1149/1.2108965 Zha, 2003, Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells, J. Power Sources, 115, 44, 10.1016/S0378-7753(02)00625-0 Strickler, 1964, Ionic conductivity of cubic solid solutions in the system CaO-Y2O3-ZrO2, J. Am. Ceram. Soc., 47, 122, 10.1111/j.1151-2916.1964.tb14368.x Strickler, 1965, Electrical conductivity in ZrO2-rich region of several M2O3-ZrO2 systems, J. Am. Ceram. Soc., 48, 2860, 10.1111/j.1151-2916.1965.tb14742.x Ioffe, 1978, On the nature of the conductivity maximum in zirconia-based solid electrolytes, Electrochim. Acta, 23, 141, 10.1016/0013-4686(78)80110-8 Ishii, 2006, Mechanisms of conductivity ceiling in YSZ, Solid State Ionics, 177, 1573, 10.1016/j.ssi.2006.06.004 Lau, 2011, Molecular dynamics simulation of yttria-stabilized zirconia (YSZ) crystalline and amorphous solids, J. Phys.-Condes. Matter, 23, 16, 10.1088/0953-8984/23/3/035401 Marrocchelli, 2011, Structural disorder in doped Zirconias, part II: vacancy ordering effects and the conductivity maximum, Chem. Mater., 23, 1365, 10.1021/cm102809t Guan, 2020, Resolving the temperature and composition dependence of ion conductivity for Yttria-stabilized zirconia from machine learning simulation, J. Phys. Chem. C, 124, 15085, 10.1021/acs.jpcc.0c04331 Ahamer, 2017, Revisiting the temperature dependent ionic conductivity of Yttria stabilized zirconia (YSZ), J. Electrochem. Soc., 164, F790, 10.1149/2.0641707jes Bauerle, 1969, Interpretation of the resistivity temperature dependence of high purity (ZrO2)0.9(Y2O3)0.10, J. Phys. Chem. Solids, 30, 565, 10.1016/0022-3697(69)90011-0 de Dios Solier, 1989, Low-temperature ionic conductivity of 9.4-Mol%-Yttria-stabilized zirconia single crystals, J. Am. Ceram. Soc., 72, 1500, 10.1111/j.1151-2916.1989.tb07688.x Li, 2002, Analysis of non-linear Arrhenius behavior of ionic conduction in cubic zirconia stabilized with yttria and calcia, J. Mater. Sci. Lett., 21, 157, 10.1023/A:1014253400747 Lakki, 2000, Mechanical loss, creep, diffusion and ionic conductivity of ZrO2-8 Mol%Y2O3 polycrystals, J. Eur. Ceram. Soc., 20, 285, 10.1016/S0955-2219(99)00162-4 Manning, 1997, The kinetics of oxygen transport in 9.5 Mol % single crystal yttria stabilised zirconia, Solid State Ionics, 100, 1, 10.1016/S0167-2738(97)00345-7 Bogicevic, 2001, Defect ordering in aliovalently doped cubic zirconia from first principles, Phys. Rev. B, 64, 14, 10.1103/PhysRevB.64.014106 Meyer, 1997, Percolation model for the anomalous conductivity of fluorite-related oxides, Phys. Rev. B, 56, 5961, 10.1103/PhysRevB.56.5961 Jaipal, 2019, Mesoscale understanding of ionic conduction in yttria stabilized zirconia: the nanoscale percolation network and its effect on O2- ion movement, Model. Simul. Mater. Sci. Eng., 27, 21, 10.1088/1361-651X/ab251d Jung, 2009, Enhanced ionic conductivity and phase meta-stability of nano-sized thin film yttria-doped zirconia (YDZ), Acta Mater., 57, 1399, 10.1016/j.actamat.2008.11.028