High-throughput characterization of Lu-doped zirconia
Tài liệu tham khảo
Koinuma, 2004, Combinatorial solid-state chemistry of inorganic materials, Nat. Mater., 3, 429, 10.1038/nmat1157
Potyrailo, 2005, Role of high-throughput characterization tools in combinatorial materials science, Meas. Sci. Technol., 16, 1, 10.1088/0957-0233/16/1/001
Kilner, 2014, Materials for intermediate-temperature solid-oxide fuel cells, Vol 44, 365
Haile, 2003, Fuel cell materials and components, Acta Mater., 51, 5981, 10.1016/j.actamat.2003.08.004
Kharton, 2004, Transport properties of solid oxide electrolyte ceramics: a brief review, Solid State Ionics, 174, 135, 10.1016/j.ssi.2004.06.015
Goodenough, 2003, Oxide-ion electrolytes, Annu. Rev. Mater. Res., 33, 91, 10.1146/annurev.matsci.33.022802.091651
Malavasi, 2010, Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features, Chem. Soc. Rev., 39, 4370, 10.1039/b915141a
Antono
Antono
Möbius, 1965, Zeitsch. Chem., 5, 431
Arachi, 1999, Electrical conductivity of the ZrO2-Ln2O3 (Ln = lanthanides) system, Solid State Ionics, 121, 133, 10.1016/S0167-2738(98)00540-2
Shannon, 1976, Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallogr. Sect. A, 32, 751, 10.1107/S0567739476001551
Huang, 2018, Out-of-plane ionic conductivity measurement configuration for high-throughput experiments, ACS Comb. Sci., 20, 443, 10.1021/acscombsci.8b00037
Duan, 2013, High-throughput measurement of ionic conductivity in composition-spread thin films, ACS Comb. Sci., 15, 273, 10.1021/co4000375
Carvalho, 2012, Influence of titanium and lutetium on the persistent luminescence of ZrO2, Opt. Mater. Express, 2, 331, 10.1364/OME.2.000331
Fabrichnaya, 2010, Thermodynamic assessment of the ZrO2–Yb2O3–Al2O3 system, Calphad, 34, 206, 10.1016/j.calphad.2010.03.001
Martin, 1993, Neutron powder investigation of tetragonal and cubic stabilized zirconia, TZP and CSZ, at tempeature up to 1400 K, Acta Crystallogr. Sect. B-Struct. Sci.Cryst. Eng. Mat., 49, 403, 10.1107/S0108768192011297
Nishimura, 2021, Ion conductive character of low-yttria-content yttria-stabilized zirconia at low temperature, Jpn. J. Appl. Phys., 60, 6, 10.35848/1347-4065/abd6dc
Usiskin, 2015, Probing the reaction pathway in (La0.8Sr0.2)0.95MnO3+δ using libraries of thin film microelectrodes, J. Mater. Chem. A, 3, 19330, 10.1039/C5TA02428E
Haile, 1998, The role of microstructure and processing on the proton conducting properties of gadolinium-doped barium cerate, J. Mater. Res., 13, 1576, 10.1557/JMR.1998.0219
Souza, 2012, Ionic and electronic conductivity of nanostructured, Samaria-doped ceria, J. Electrochem. Soc., 159, K127, 10.1149/2.056205jes
Nakamura, 1986, Defect structure, ionic conductivity, and diffusion in Yttria-stabilized zirconia and related oxide electrolytes with fluorite structure, J. Electrochem. Soc., 133, 1542, 10.1149/1.2108965
Zha, 2003, Effect of Gd (Sm) doping on properties of ceria electrolyte for solid oxide fuel cells, J. Power Sources, 115, 44, 10.1016/S0378-7753(02)00625-0
Strickler, 1964, Ionic conductivity of cubic solid solutions in the system CaO-Y2O3-ZrO2, J. Am. Ceram. Soc., 47, 122, 10.1111/j.1151-2916.1964.tb14368.x
Strickler, 1965, Electrical conductivity in ZrO2-rich region of several M2O3-ZrO2 systems, J. Am. Ceram. Soc., 48, 2860, 10.1111/j.1151-2916.1965.tb14742.x
Ioffe, 1978, On the nature of the conductivity maximum in zirconia-based solid electrolytes, Electrochim. Acta, 23, 141, 10.1016/0013-4686(78)80110-8
Ishii, 2006, Mechanisms of conductivity ceiling in YSZ, Solid State Ionics, 177, 1573, 10.1016/j.ssi.2006.06.004
Lau, 2011, Molecular dynamics simulation of yttria-stabilized zirconia (YSZ) crystalline and amorphous solids, J. Phys.-Condes. Matter, 23, 16, 10.1088/0953-8984/23/3/035401
Marrocchelli, 2011, Structural disorder in doped Zirconias, part II: vacancy ordering effects and the conductivity maximum, Chem. Mater., 23, 1365, 10.1021/cm102809t
Guan, 2020, Resolving the temperature and composition dependence of ion conductivity for Yttria-stabilized zirconia from machine learning simulation, J. Phys. Chem. C, 124, 15085, 10.1021/acs.jpcc.0c04331
Ahamer, 2017, Revisiting the temperature dependent ionic conductivity of Yttria stabilized zirconia (YSZ), J. Electrochem. Soc., 164, F790, 10.1149/2.0641707jes
Bauerle, 1969, Interpretation of the resistivity temperature dependence of high purity (ZrO2)0.9(Y2O3)0.10, J. Phys. Chem. Solids, 30, 565, 10.1016/0022-3697(69)90011-0
de Dios Solier, 1989, Low-temperature ionic conductivity of 9.4-Mol%-Yttria-stabilized zirconia single crystals, J. Am. Ceram. Soc., 72, 1500, 10.1111/j.1151-2916.1989.tb07688.x
Li, 2002, Analysis of non-linear Arrhenius behavior of ionic conduction in cubic zirconia stabilized with yttria and calcia, J. Mater. Sci. Lett., 21, 157, 10.1023/A:1014253400747
Lakki, 2000, Mechanical loss, creep, diffusion and ionic conductivity of ZrO2-8 Mol%Y2O3 polycrystals, J. Eur. Ceram. Soc., 20, 285, 10.1016/S0955-2219(99)00162-4
Manning, 1997, The kinetics of oxygen transport in 9.5 Mol % single crystal yttria stabilised zirconia, Solid State Ionics, 100, 1, 10.1016/S0167-2738(97)00345-7
Bogicevic, 2001, Defect ordering in aliovalently doped cubic zirconia from first principles, Phys. Rev. B, 64, 14, 10.1103/PhysRevB.64.014106
Meyer, 1997, Percolation model for the anomalous conductivity of fluorite-related oxides, Phys. Rev. B, 56, 5961, 10.1103/PhysRevB.56.5961
Jaipal, 2019, Mesoscale understanding of ionic conduction in yttria stabilized zirconia: the nanoscale percolation network and its effect on O2- ion movement, Model. Simul. Mater. Sci. Eng., 27, 21, 10.1088/1361-651X/ab251d
Jung, 2009, Enhanced ionic conductivity and phase meta-stability of nano-sized thin film yttria-doped zirconia (YDZ), Acta Mater., 57, 1399, 10.1016/j.actamat.2008.11.028