High thermal conductivity of high-quality monolayer boron nitride and its thermal expansion

Science advances - Tập 5 Số 6 - 2019
Qiran Cai1, Declan Scullion2, Wei Gan1, Alexey Falin1, Shunying Zhang1, Kenji Watanabe3, Takashi Taniguchi3, Ying Chen1, Elton J. G. Santos2, Lu Hua Li1
1Institute for Frontier Materials, Deakin University, Waurn Ponds, Victoria 3216, Australia
2School of Mathematics and Physics, Queen's University, Belfast, Belfast BT7 1NN, UK
3National Institute for Materials Science, Namiki 1-1 Tsukuba Ibaraki, 305-0044, Japan

Tóm tắt

Atomically thin boron nitride is one of the best thermal conductors among semiconductors and insulators.

Từ khóa


Tài liệu tham khảo

10.1021/nl0731872

S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, C. N. Lau, Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits. Appl. Phys. Lett. 92, 151911 (2008).

J.-U. Lee, D. Yoon, H. Kim, S. W. Lee, H. Cheong, Thermal conductivity of suspended pristine graphene measured by Raman spectroscopy. Phys. Rev. B 83, 081419 (2011).

10.1021/nl9041966

10.1021/nn102915x

S. Chen, Q. Li, Q. Zhang, Y. Qu, H. Ji, R. S. Ruoff, W. Cai, Thermal conductivity measurements of suspended graphene with and without wrinkles by micro-Raman mapping. Nanotechnology 23, 365701 (2012).

L. A. Jauregui, Y. Yue, A. N. Sidorov, J. Hu, Q. Yu, G. Lopez, R. Jalilian, D. K. Benjamin, D. A. Delkd, W. Wu, Z. Liu, X. Wang, Z. Jiang, X. Ruan, J. Bao, S. S. Pei, Y. P. Chen, Thermal transport in graphene nanostructures: Experiments and simulations. ECS Trans. 28, 73–83 (2010).

X. Xu, L. F. C. Pereira, Y. Wang, J. Wu, K. Zhang, X. Zhao, S. Bae, C. T. Bui, R. Xie, J. T. L. Thong, B. H. Hong, K. P. Loh, D. Donadio, B. Li, B. Özyilmaz, Length-dependent thermal conductivity in suspended single-layer graphene. Nat. Commun. 5, 3689 (2014).

H. Malekpour, P. Ramnani, S. Srinivasan, G. Balasubramanian, D. L. Nika, A. Mulchandani, R. K. Lake, A. A. Balandin, Thermal conductivity of graphene with defects induced by electron beam irradiation. Nanoscale 8, 14608–14616 (2016).

H. Li, H. Ying, X. Chen, D. L. Nika, A. I. Cocemasov, W. Cai, A. A. Balandin, S. Chen, Thermal conductivity of twisted bilayer graphene. Nanoscale 6, 13402–13408 (2014).

10.1126/science.aat5522

10.1126/science.aat8982

10.1126/science.aat7932

E. K. Sichel, R. E. Miller, M. S. Abrahams, C. J. Buiocchi, Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride. Phys. Rev. B 13, 4607–4611 (1976).

L. H. Li, Y. Chen, Atomically thin boron nitride: Unique properties and applications. Adv. Funct. Mater. 26, 2594–2608 (2016).

10.1038/ncomms15815

10.1038/nnano.2010.172

L. H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen, Strong oxidation resistance of atomically thin boron nitride nanosheets. ACS Nano 8, 1457–1462 (2014).

L. H. Li, T. Xing, Y. Chen, R. Jones, Boron nitride nanosheets for metal protection. Adv. Mater. Interfaces 1, 1300132 (2014).

Q. Cai, S. Mateti, W. Yang, R. Jones, K. Watanabe, T. Taniguchi, S. Huang, Y. Chen, L. H. Li, Boron nitride nanosheets improve sensitivity and reusability of surface enhanced Raman spectroscopy. Angew. Chem. Int. Ed. 55, 8405–8409 (2016).

C. Sevik, A. Kinaci, J. B. Haskins, T. Çağin, Characterization of thermal transport in low-dimensional boron nitride nanostructures. Phys. Rev. B 84, 085409 (2011).

L. Lindsay, D. A. Broido, Theory of thermal transport in multilayer hexagonal boron nitride and nanotubes. Phys. Rev. B 85, 035436 (2012).

B. Mortazavi, L. F. C. Pereira, J.-W. Jiang, T. Rabczuk, Modelling heat conduction in polycrystalline hexagonal boron-nitride films. Sci. Rep. 5, 13228 (2015).

10.1038/ncomms7400

I. Jo, M. T. Pettes, J. Kim, K. Watanabe, T. Taniguchi, Z. Yao, L. Shi, Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett. 13, 550–554 (2013).

H. Zhou, J. Zhu, Z. Liu, Z. Yan, X. Fan, J. Lin, G. Wang, Q. Yan, T. Yu, P. M. Ajayan, J. M. Tour, High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Res. 7, 1232–1240 (2014).

M. T. Alam, M. S. Bresnehan, J. A. Robinson, M. A. Haque, Thermal conductivity of ultra-thin chemical vapor deposited hexagonal boron nitride films. Appl. Phys. Lett. 104, 013113 (2014).

Z. Lin, C. Liu, Y. Chai, High thermally conductive and electrically insulating 2D boron nitride nanosheet for efficient heat dissipation of high-power transistors. 2D Mater. 3, 041009 (2016).

C. Wang, J. Guo, L. Dong, A. Aiyiti, X. Xu, B. Li, Superior thermal conductivity in suspended bilayer hexagonal boron nitride. Sci. Rep. 6, 25334 (2016).

S. Ghosh, W. Bao, D. L. Nika, S. Subrina, E. P. Pokatilov, C. N. Lau, A. A. Balandin, Dimensional crossover of thermal transport in few-layer graphene. Nat. Mater. 9, 555–558 (2010).

10.1016/j.jcrysgro.2006.12.061

Q. Cai, A. Du, G. Gao, S. Mateti, B. C. C. Cowie, D. Qian, S. Zhang, Y. Lu, L. Fu, T. Taniguchi, S. M. Huang, Y. Chen, R. S. Ruoff, L. H. Li, Molecule-induced conformational change in boron nitride nanosheets with enhanced surface adsorption. Adv. Funct. Mater. 26, 8202–8210 (2016).

L. Zhou, Y. Wang, G. Cao, Boundary condition and pre-strain effects on the free standing indentation response of graphene monolayer. J. Phys. Condens. Mater. 25, 475303 (2013).

R. Beiranvand, S. Valedbagi, Electronic and optical properties of h-BN nanosheet: A first principles calculation. Diamond Relat. Mater. 58, 190–195 (2015).

L. Lindsay, D. A. Broido, Enhanced thermal conductivity and isotope effect in single-layer hexagonal boron nitride. Phys. Rev. B 84, 155421 (2011).

L. Lindsay, D. A. Broido, N. Mingo, Flexural phonons and thermal transport in multilayer graphene and graphite. Phys. Rev. B 83, 235428 (2011).

10.1038/nmat3064

D. L. Nika, A. A. Balandin, Phonons and thermal transport in graphene and graphene-based materials. Rep. Prog. Phys. 80, 036502 (2017).

10.1021/nl201488g

R. S. Pease, An x-ray study of boron nitride. Acta Crystallogr. 5, 356–361 (1952).

Q. Cai, D. Scullion, A. Falin, K. Watanabe, T. Taniguchi, Y. Chen, E. J. G. Santos, L. H. Li, Raman signature and phonon dispersion of atomically thin boron nitride. Nanoscale 9, 3059–3067 (2017).

M. S. Green, Markoff random processes and the statistical mechanics of time-dependent phenomena. II. irreversible processes in fluids. J. Chem. Phys. 22, 398–413 (1954).

J. Tersoff, New empirical-approach for the structure and energy of covalent systems. Phys. Rev. B 37, 6991–7000 (1988).

10.1103/PhysRevB.48.13115

10.1103/PhysRevLett.77.3865

10.1103/PhysRevLett.108.236402

10.1063/1.4865104

10.1103/PhysRevB.59.1758

10.1016/j.scriptamat.2015.07.021