High-temperature-resistant barium strontium titanate @Ag/poly(arylene ether nitrile) composites with enhanced dielectric performance and high mechanical strength

Springer Science and Business Media LLC - Tập 5 - Trang 823-833 - 2021
Zili Tang1, Junsong Xia1, Hang Yin1, Guanghui Fu1, Xitong Ai1, Hailong Tang1, Chaolong Yang1, Lunjun Qu1, Youbing Li1
1School of Materials Science and Engineering, Chongqing University of Technology, Chongqing, China

Tóm tắt

Novel barium strontium titanate@silver (BST@Ag) hybrid particles with controllable Ag content are fabricated through the surface grafting modification combined with an in situ reduction of Ag+, using (3-mercaptopropyl)trimethoxysilane (MPTMS) as a surface-grafting agent. The surface character of BST nanoparticles changes from initially hydrophilic to lipophilic upon grafting of MPTMS. Polymer composites are then prepared by dispersing the BST@Ag hybrid particles in poly(aryl ether nitrile) (PAEN). Benefiting from improved compatibility and dispersibility between modified particle fillers and the polymer matrix, the BST@Ag/PAEN composites exhibit enhanced dielectric properties, including significantly increased dielectric permittivity, relatively low dielectric loss, and good permittivity-temperature stability below 140 °C. The composites also demonstrate excellent thermal stability and high mechanical strength, offering attractive prospects as high-temperature-resistant dielectric materials for use in various engineering applications.

Tài liệu tham khảo

Gu H, Xu X, Zhang H, Liang C, Lou H, Ma C, Li Y, Guo Z, Gu J (2018) Chitosan-coated-magnetite with covalently grafted polystyrene based carbon nanocomposites for hexavalent chromium adsorption. Eng Sci 1:46–54. https://doi.org/10.30919/espub.es.180308 Yu B, Li X, An J, Jiang Z, Yang J (2018) Interfacial and glass transition properties of surface-treated carbon fiber reinforced polymer composites under hygrothermal conditions. Eng Sci 2:67–73. https://doi.org/10.30919/es8d628 Lu X, Liu H, Murugadoss V, Seok I, Huang J, Ryu JE, Guo Z (2020) Polyethylene glycol/carbon black shape-stable phase change composites for peak load regulating of electric power system and corresponding thermal energy storage. Eng Sci 9:25–34. https://doi.org/10.30919/es8d901 Wang Q, Zhang J, Zhang Z, Hao Y, Bi K (2020) Enhanced dielectric properties and energy storage density of PVDF nanocomposites by co-loading of BaTiO3 and CoFe2O4 nanoparticles. Adv Compos Hybrid Mater 3:58–65. https://doi.org/10.1007/s42114-020-00138-4 Liu F, Li Q, Li Z, Dong L, Xiong C, Wang Q (2018) Ternary PVDF-based terpolymer nanocomposites with enhanced energy density and high power density. Compos Part A Appl S 109:597–603. https://doi.org/10.1016/j.compositesa.2018.03.019 Chen J, Wang Y, Xu X, Yuan Q, Niu Y, Wang Q, Wang H (2019) Ultrahigh discharge efficiency and energy density achieved at low electric fields from sandwich-structured polymer films containing dielectric elastomers. J Mater Chem A 7:3729–3736. https://doi.org/10.1039/c8ta11790j Patil SS, Bhat TS, Teli AM, Beknalkar SA, Dhavale SB, Faras MM, Karanjkar MM, Patil PS (2020) Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng Sci 12:38–51. https://doi.org/10.30919/es8d1140 Kim JY, Lee J, Lee WH, Kholmanov IN, Suk JW, Kim TY, Hao Y, Chou H et al (2014) Flexible and transparent dielectric film with a high dielectric constant using chemical vapor deposition-grown graphene interlayer. ACS Nano 8:269–274. https://doi.org/10.1021/nn406058g Zhang C, Yin Y, Yang Q, Shi Z, Hu GH, Xiong C (2019) Flexible cellulose/BaTiO3 nanocomposites with high energy density for film dielectric capacitor. ACS Sustainable Chem Eng 7. https://doi.org/10.1021/acssuschemeng.9b01302 Wang J, Chen H, Li X, Zhang C, Yu W, Zhou L, Yang Q, Shi Z, Xiong C (2019) Flexible dielectric film with high energy density based on chitin/boron nitride nanosheets. Chem Eng J 383:123147. https://doi.org/10.1016/j.cej.2019.123147 Wang X, Zeng X, Cao D (2018) Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/polyaniline composites as high performance supercapacitor materials. Eng Sci 1:55–63. https://doi.org/10.30919/es.180325 Xiao L, Qi H, Qu K, Shi C, Cheng Y, Sun Z, Yuan B, Huang Z et al (2021) Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv Compos Hybrid Mater 4:306–316. https://doi.org/10.1007/s42114-021-00223-2 Zhan Y, Long Z, Wan X, Zhan C, Zhang J, He Y (2017) Enhanced dielectric permittivity and thermal conductivity of hexagonal boron nitride/poly(arylene ether nitrile) composites through magnetic alignment and mussel inspired co-modification. Ceram Int 43:12109–12119. https://doi.org/10.1016/j.ceramint.2017.06.068 Tang X, You Y, Mao H, Li K, Wei R, Liu X (2018) Improved energy storage density of composite films based on poly(arylene ether nitrile) and sulfonated poly(arylene ether nitrile) functionalized graphene. Mater Today Commun 17:355–361. https://doi.org/10.1016/j.mtcomm.2018.09.025 Wang J, Shi Z, Wang X, Mai X, Fan R, Liu H, Wang X, Guo Z (2018) Enhancing dielectric performance of poly(vinylidene fluoride) nanocomposites via controlled distribution of carbon nanotubes and barium titanate nanoparticle. Eng Sci 4:79–86. https://doi.org/10.30919/es8d759 Guo Y, Meng N, Xu J, Zhang K, Zhang Q, Pawlikowska E, Szafran M, Gao F (2019) Microstructure and dielectric properties of Ba0.6Sr0.4TiO3/(acrylonitrile-butadiene-styrene) -poly(vinylidene fluoride) composites. Adv Compos Hybrid Mater 2:681–689. https://doi.org/10.1007/s42114-019-00114-7 Dhatarwal P, Sengwa RJ (2020) Structural and dielectric characterization of (PVP/PEO)/Al2O3 nanocomposites for biodegradable nanodielectric applications. Adv Compos Hybrid Mater 3:344–353. https://doi.org/10.1007/s42114-020-00168-y Fan B, Liu F, Yang G, Li H, Zhang G, Jiang S, Wang Q (2018) Dielectric materials for high-temperature capacitors. IET Nanodielectrics 1:32–40. https://doi.org/10.1049/iet-nde.2018.0002 Li Q, Liu F, Yang T, Gadinski RM (2016) Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures. Proc Natl Acad Sci 113:9995–10000. https://doi.org/10.1073/pnas.1603792113 Chen Y, Li H (2005) Effect of ultrasound on the morphology and properties of polypropylene/inorganic filler composites. J Appl Polym Sci 97:1553–1560. https://doi.org/10.1002/app.21473 Olariu M, Scarlatache AV, Niagu A, Ursache S (2012) The influence of frequency and temperature upon dielectric behavior of polypropylene reinforced with multi-walled carbon nanotubes (MWCNTs). OPTIM 287-292.https://doi.org/10.1109/OPTIM.2012.6231902 Saxena A, Sadhana R, Rao V, Kanakavel M, Ninan K (2003) Synthesis and properties of polyarylene ether nitrile copolymers. Polym Bull 50:219–226. https://doi.org/10.1007/s00289-003-0166-8 Li C, Gu Y, Liu X (2006) Synthesis and properties of phenolphthalein-based polyarylene ether nitrile copolymers. Mater Lett 60:137–141. https://doi.org/10.1016/j.matlet.2005.08.004 Tang H, Yang J, Zhong J, Zhao R (2011) Synthesis and dielectric properties of polyarylene ether nitriles with high thermal stability and high mechanical strength. Mater Lett 65:2758–2761. https://doi.org/10.1016/j.matlet.2011.06.007 Zhou Y, Wang P, Ruan G, Xu P, Ding Y (2021) Synergistic effect of P[MPEGMA-IL] modified graphene on morphology and dielectric properties of PLA/PCL blends. ES Mater Manuf 11:20–29. https://doi.org/10.30919/esmm5f928 Sun L, Liang L, Shi Z, Wang H, Xie P, Dastan D, Sun K, Fan R (2020) Optimizing strategy for the dielectric performance of topological-structured polymer nanocomposites by rationally tailoring the spatial distribution of nanofillers. Eng Sci 12:95–105. https://doi.org/10.30919/es8d1148 Huang J, Zou W, Luo Y, Wu Q, Lu X, Qu J (2021) Phase morphology, rheological behavior, and mechanical properties of poly(lactic acid)/poly(butylene succinate)/hexamethylene diisocyanate reactive blends. ES Energy Environ 12:86–94. https://doi.org/10.30919/esee8c1017 Ding Y, Wang F, Li Y, Wang K (2021) Effect of different Ag content on the structural and mechanical properties of Sn15Bi solder. ES Mater Manuf 11:65–71. https://doi.org/10.30919/esmm5f1045 Wang B, Liang G, Jiao Y, Gu A, Liu L, Yuan L, Zhang W (2013) Two-layer materials of polyethylene and a carbon nanotubes /cyanate estercomposite with high dielectric constant and extremely low dielectric loss. Carbon 54:224–233. https://doi.org/10.1016/j.carbon.2012.11.033 Piana F, Pfleger J, Jambor R, Řičica T, Macak MJ (2017) High-k dielectric composites of poly(2-cyanoethyl vinyl ether) and barium titanate for flexible electronics. J Appl Polym Sci 134:45236. https://doi.org/10.1002/app.45236 Sun L, Liang L, Shi Z, Wang H, Xie P, Dastan D, Sun K, Fan R (2020) Optimizing strategy for the dielectric performance of topological-structured polymer nanocomposites by rationally tailoring the spatial distribution of nanofillers. Eng Sci 12:95–105. https://doi.org/10.30919/es8d1148 George S, Santha IN, Sebastian TM (2009) Percolation phenomenon in barium samarium titanate–silver composite. J Phys Chem Solids 70:107–111. https://doi.org/10.1016/j.jpcs.2008.09.015 Yang W, Yang X, Pu Z, Xu M, Liu X (2014) The properties (rheological, dielectric, and mechanical) and microtopography of spherical fullerene-filled poly(arylene ether nitrile) nanocomposites. J Appl Polym Sci 131:40100. https://doi.org/10.1002/app.40100 Huang X, Pu Z, Feng M, Tong L, Liu X (2013) BaTiO3@MWCNTs core/shell nanotubes embedded PEN nanocomposite films with high thermal stability and high permittivity. Mater Lett 96:139–142. https://doi.org/10.1016/j.matlet.2013.01.022 Fang F, Yang W, Yu S, Luo S (2014) Mechanism of high dielectric performance of polymer composites induced by BaTiO3-supporting Ag hybrid fillers. Appl Phys Lett 104:132909. https://doi.org/10.1063/1.4870522 Tang H, Pu Z, Huang X, Wei J, Liu X, Lin Z (2014) Novel blue-emitting carboxyl-functionalized poly(arylene ether nitrile)s with excellent thermal and mechanical properties. Polym Chem-UK 5:3673–3679. https://doi.org/10.1039/C3PY01782F Losq LC, Cody DG, Mysen OB (2015) Complex IR spectra of OH-groups in silicate glasses: Implications for the use of the 4500 cm-1 IR peak as a marker of OH-groups concentration. Am Mineral 100:945–950. https://doi.org/10.2138/am-2015-5076 Xie L, Huang X, Li B, Zhi C, Tanaka T, Jiang P (2013) Core-satellite Ag@BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss. Phys Chem Chem Phys 15:17560–17569. https://doi.org/10.1039/c3cp52799a Jesionowski T, Krysztafkiewicz A (2001) Influence of silane coupling agents on surface properties of precipitated silicas. Appl Surf Sci 172:18–32. https://doi.org/10.1016/S0169-4332(00)00828-X Lahijani YZK, Mohseni M, Bastani S (2013) Utilizing Taguchi design of experiment to study the surface treatment of a nanosilica with an acrylic silane coupling agent and revealing the dispersibility of particles in a urethane acrylate resin. JCTR 10:537–547. https://doi.org/10.1007/s11998-013-9471-9 Velikov K, Zegers EG, Blaaderen VA (2003) Synthesis and characterization of large colloidal silver particles. Langmuir 19:1384–1389. https://doi.org/10.1021/la026610p Chekin F, Bagheri S, Abd Hamid BS (2015) Functionalization of graphene oxide with 3-mercaptopropyltrimethoxysilane and its electrocatalytic activity in aqueous medium. J Chinese Chem Society 62:689–694. https://doi.org/10.1002/jccs.201400213 Yang J, Tang Z, Yin H, Liu Y, Wang L, Tang H, Li Y (2019) Poly(arylene ether nitrile) composites with surface-hydroxylated calcium copper titanate particles for high-temperature-resistant dielectric applications. Polymers 11:766. https://doi.org/10.3390/polym11050766 Balberg I, Jedrzejewski J, Savir E (2011) Electrical transport mechanisms in three dimensional ensembles of silicon quantum dots. J Appl Phys 110:061301. https://doi.org/10.1063/1.3637636 Jiang S, Yu Y, Zeng KY (2009) Novel Ag–BaTiO3/PVDF three-component nanocomposites with high energy density and the influence of nano-Ag on the dielectric properties. Curr Appl Phys 9:956–959. https://doi.org/10.1016/j.cap.2008.09.013 Nootsuwan N, Plungpongpan K, Wattanathana W (2016) Dielectric and mechanical properties of poly(butylene succinate) thin film composites incorporated with barium strontium titanate powder. Integr Ferroelectr 174:155–166. https://doi.org/10.1080/10584587.2016.1195619