High-temperature-resistant barium strontium titanate @Ag/poly(arylene ether nitrile) composites with enhanced dielectric performance and high mechanical strength
Tóm tắt
Novel barium strontium titanate@silver (BST@Ag) hybrid particles with controllable Ag content are fabricated through the surface grafting modification combined with an in situ reduction of Ag+, using (3-mercaptopropyl)trimethoxysilane (MPTMS) as a surface-grafting agent. The surface character of BST nanoparticles changes from initially hydrophilic to lipophilic upon grafting of MPTMS. Polymer composites are then prepared by dispersing the BST@Ag hybrid particles in poly(aryl ether nitrile) (PAEN). Benefiting from improved compatibility and dispersibility between modified particle fillers and the polymer matrix, the BST@Ag/PAEN composites exhibit enhanced dielectric properties, including significantly increased dielectric permittivity, relatively low dielectric loss, and good permittivity-temperature stability below 140 °C. The composites also demonstrate excellent thermal stability and high mechanical strength, offering attractive prospects as high-temperature-resistant dielectric materials for use in various engineering applications.
Tài liệu tham khảo
Gu H, Xu X, Zhang H, Liang C, Lou H, Ma C, Li Y, Guo Z, Gu J (2018) Chitosan-coated-magnetite with covalently grafted polystyrene based carbon nanocomposites for hexavalent chromium adsorption. Eng Sci 1:46–54. https://doi.org/10.30919/espub.es.180308
Yu B, Li X, An J, Jiang Z, Yang J (2018) Interfacial and glass transition properties of surface-treated carbon fiber reinforced polymer composites under hygrothermal conditions. Eng Sci 2:67–73. https://doi.org/10.30919/es8d628
Lu X, Liu H, Murugadoss V, Seok I, Huang J, Ryu JE, Guo Z (2020) Polyethylene glycol/carbon black shape-stable phase change composites for peak load regulating of electric power system and corresponding thermal energy storage. Eng Sci 9:25–34. https://doi.org/10.30919/es8d901
Wang Q, Zhang J, Zhang Z, Hao Y, Bi K (2020) Enhanced dielectric properties and energy storage density of PVDF nanocomposites by co-loading of BaTiO3 and CoFe2O4 nanoparticles. Adv Compos Hybrid Mater 3:58–65. https://doi.org/10.1007/s42114-020-00138-4
Liu F, Li Q, Li Z, Dong L, Xiong C, Wang Q (2018) Ternary PVDF-based terpolymer nanocomposites with enhanced energy density and high power density. Compos Part A Appl S 109:597–603. https://doi.org/10.1016/j.compositesa.2018.03.019
Chen J, Wang Y, Xu X, Yuan Q, Niu Y, Wang Q, Wang H (2019) Ultrahigh discharge efficiency and energy density achieved at low electric fields from sandwich-structured polymer films containing dielectric elastomers. J Mater Chem A 7:3729–3736. https://doi.org/10.1039/c8ta11790j
Patil SS, Bhat TS, Teli AM, Beknalkar SA, Dhavale SB, Faras MM, Karanjkar MM, Patil PS (2020) Hybrid solid state supercapacitors (HSSC’s) for high energy & power density: an overview. Eng Sci 12:38–51. https://doi.org/10.30919/es8d1140
Kim JY, Lee J, Lee WH, Kholmanov IN, Suk JW, Kim TY, Hao Y, Chou H et al (2014) Flexible and transparent dielectric film with a high dielectric constant using chemical vapor deposition-grown graphene interlayer. ACS Nano 8:269–274. https://doi.org/10.1021/nn406058g
Zhang C, Yin Y, Yang Q, Shi Z, Hu GH, Xiong C (2019) Flexible cellulose/BaTiO3 nanocomposites with high energy density for film dielectric capacitor. ACS Sustainable Chem Eng 7. https://doi.org/10.1021/acssuschemeng.9b01302
Wang J, Chen H, Li X, Zhang C, Yu W, Zhou L, Yang Q, Shi Z, Xiong C (2019) Flexible dielectric film with high energy density based on chitin/boron nitride nanosheets. Chem Eng J 383:123147. https://doi.org/10.1016/j.cej.2019.123147
Wang X, Zeng X, Cao D (2018) Biomass-derived nitrogen-doped porous carbons (NPC) and NPC/polyaniline composites as high performance supercapacitor materials. Eng Sci 1:55–63. https://doi.org/10.30919/es.180325
Xiao L, Qi H, Qu K, Shi C, Cheng Y, Sun Z, Yuan B, Huang Z et al (2021) Layer-by-layer assembled free-standing and flexible nanocellulose/porous Co3O4 polyhedron hybrid film as supercapacitor electrodes. Adv Compos Hybrid Mater 4:306–316. https://doi.org/10.1007/s42114-021-00223-2
Zhan Y, Long Z, Wan X, Zhan C, Zhang J, He Y (2017) Enhanced dielectric permittivity and thermal conductivity of hexagonal boron nitride/poly(arylene ether nitrile) composites through magnetic alignment and mussel inspired co-modification. Ceram Int 43:12109–12119. https://doi.org/10.1016/j.ceramint.2017.06.068
Tang X, You Y, Mao H, Li K, Wei R, Liu X (2018) Improved energy storage density of composite films based on poly(arylene ether nitrile) and sulfonated poly(arylene ether nitrile) functionalized graphene. Mater Today Commun 17:355–361. https://doi.org/10.1016/j.mtcomm.2018.09.025
Wang J, Shi Z, Wang X, Mai X, Fan R, Liu H, Wang X, Guo Z (2018) Enhancing dielectric performance of poly(vinylidene fluoride) nanocomposites via controlled distribution of carbon nanotubes and barium titanate nanoparticle. Eng Sci 4:79–86. https://doi.org/10.30919/es8d759
Guo Y, Meng N, Xu J, Zhang K, Zhang Q, Pawlikowska E, Szafran M, Gao F (2019) Microstructure and dielectric properties of Ba0.6Sr0.4TiO3/(acrylonitrile-butadiene-styrene) -poly(vinylidene fluoride) composites. Adv Compos Hybrid Mater 2:681–689. https://doi.org/10.1007/s42114-019-00114-7
Dhatarwal P, Sengwa RJ (2020) Structural and dielectric characterization of (PVP/PEO)/Al2O3 nanocomposites for biodegradable nanodielectric applications. Adv Compos Hybrid Mater 3:344–353. https://doi.org/10.1007/s42114-020-00168-y
Fan B, Liu F, Yang G, Li H, Zhang G, Jiang S, Wang Q (2018) Dielectric materials for high-temperature capacitors. IET Nanodielectrics 1:32–40. https://doi.org/10.1049/iet-nde.2018.0002
Li Q, Liu F, Yang T, Gadinski RM (2016) Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures. Proc Natl Acad Sci 113:9995–10000. https://doi.org/10.1073/pnas.1603792113
Chen Y, Li H (2005) Effect of ultrasound on the morphology and properties of polypropylene/inorganic filler composites. J Appl Polym Sci 97:1553–1560. https://doi.org/10.1002/app.21473
Olariu M, Scarlatache AV, Niagu A, Ursache S (2012) The influence of frequency and temperature upon dielectric behavior of polypropylene reinforced with multi-walled carbon nanotubes (MWCNTs). OPTIM 287-292.https://doi.org/10.1109/OPTIM.2012.6231902
Saxena A, Sadhana R, Rao V, Kanakavel M, Ninan K (2003) Synthesis and properties of polyarylene ether nitrile copolymers. Polym Bull 50:219–226. https://doi.org/10.1007/s00289-003-0166-8
Li C, Gu Y, Liu X (2006) Synthesis and properties of phenolphthalein-based polyarylene ether nitrile copolymers. Mater Lett 60:137–141. https://doi.org/10.1016/j.matlet.2005.08.004
Tang H, Yang J, Zhong J, Zhao R (2011) Synthesis and dielectric properties of polyarylene ether nitriles with high thermal stability and high mechanical strength. Mater Lett 65:2758–2761. https://doi.org/10.1016/j.matlet.2011.06.007
Zhou Y, Wang P, Ruan G, Xu P, Ding Y (2021) Synergistic effect of P[MPEGMA-IL] modified graphene on morphology and dielectric properties of PLA/PCL blends. ES Mater Manuf 11:20–29. https://doi.org/10.30919/esmm5f928
Sun L, Liang L, Shi Z, Wang H, Xie P, Dastan D, Sun K, Fan R (2020) Optimizing strategy for the dielectric performance of topological-structured polymer nanocomposites by rationally tailoring the spatial distribution of nanofillers. Eng Sci 12:95–105. https://doi.org/10.30919/es8d1148
Huang J, Zou W, Luo Y, Wu Q, Lu X, Qu J (2021) Phase morphology, rheological behavior, and mechanical properties of poly(lactic acid)/poly(butylene succinate)/hexamethylene diisocyanate reactive blends. ES Energy Environ 12:86–94. https://doi.org/10.30919/esee8c1017
Ding Y, Wang F, Li Y, Wang K (2021) Effect of different Ag content on the structural and mechanical properties of Sn15Bi solder. ES Mater Manuf 11:65–71. https://doi.org/10.30919/esmm5f1045
Wang B, Liang G, Jiao Y, Gu A, Liu L, Yuan L, Zhang W (2013) Two-layer materials of polyethylene and a carbon nanotubes /cyanate estercomposite with high dielectric constant and extremely low dielectric loss. Carbon 54:224–233. https://doi.org/10.1016/j.carbon.2012.11.033
Piana F, Pfleger J, Jambor R, Řičica T, Macak MJ (2017) High-k dielectric composites of poly(2-cyanoethyl vinyl ether) and barium titanate for flexible electronics. J Appl Polym Sci 134:45236. https://doi.org/10.1002/app.45236
Sun L, Liang L, Shi Z, Wang H, Xie P, Dastan D, Sun K, Fan R (2020) Optimizing strategy for the dielectric performance of topological-structured polymer nanocomposites by rationally tailoring the spatial distribution of nanofillers. Eng Sci 12:95–105. https://doi.org/10.30919/es8d1148
George S, Santha IN, Sebastian TM (2009) Percolation phenomenon in barium samarium titanate–silver composite. J Phys Chem Solids 70:107–111. https://doi.org/10.1016/j.jpcs.2008.09.015
Yang W, Yang X, Pu Z, Xu M, Liu X (2014) The properties (rheological, dielectric, and mechanical) and microtopography of spherical fullerene-filled poly(arylene ether nitrile) nanocomposites. J Appl Polym Sci 131:40100. https://doi.org/10.1002/app.40100
Huang X, Pu Z, Feng M, Tong L, Liu X (2013) BaTiO3@MWCNTs core/shell nanotubes embedded PEN nanocomposite films with high thermal stability and high permittivity. Mater Lett 96:139–142. https://doi.org/10.1016/j.matlet.2013.01.022
Fang F, Yang W, Yu S, Luo S (2014) Mechanism of high dielectric performance of polymer composites induced by BaTiO3-supporting Ag hybrid fillers. Appl Phys Lett 104:132909. https://doi.org/10.1063/1.4870522
Tang H, Pu Z, Huang X, Wei J, Liu X, Lin Z (2014) Novel blue-emitting carboxyl-functionalized poly(arylene ether nitrile)s with excellent thermal and mechanical properties. Polym Chem-UK 5:3673–3679. https://doi.org/10.1039/C3PY01782F
Losq LC, Cody DG, Mysen OB (2015) Complex IR spectra of OH-groups in silicate glasses: Implications for the use of the 4500 cm-1 IR peak as a marker of OH-groups concentration. Am Mineral 100:945–950. https://doi.org/10.2138/am-2015-5076
Xie L, Huang X, Li B, Zhi C, Tanaka T, Jiang P (2013) Core-satellite Ag@BaTiO3 nanoassemblies for fabrication of polymer nanocomposites with high discharged energy density, high breakdown strength and low dielectric loss. Phys Chem Chem Phys 15:17560–17569. https://doi.org/10.1039/c3cp52799a
Jesionowski T, Krysztafkiewicz A (2001) Influence of silane coupling agents on surface properties of precipitated silicas. Appl Surf Sci 172:18–32. https://doi.org/10.1016/S0169-4332(00)00828-X
Lahijani YZK, Mohseni M, Bastani S (2013) Utilizing Taguchi design of experiment to study the surface treatment of a nanosilica with an acrylic silane coupling agent and revealing the dispersibility of particles in a urethane acrylate resin. JCTR 10:537–547. https://doi.org/10.1007/s11998-013-9471-9
Velikov K, Zegers EG, Blaaderen VA (2003) Synthesis and characterization of large colloidal silver particles. Langmuir 19:1384–1389. https://doi.org/10.1021/la026610p
Chekin F, Bagheri S, Abd Hamid BS (2015) Functionalization of graphene oxide with 3-mercaptopropyltrimethoxysilane and its electrocatalytic activity in aqueous medium. J Chinese Chem Society 62:689–694. https://doi.org/10.1002/jccs.201400213
Yang J, Tang Z, Yin H, Liu Y, Wang L, Tang H, Li Y (2019) Poly(arylene ether nitrile) composites with surface-hydroxylated calcium copper titanate particles for high-temperature-resistant dielectric applications. Polymers 11:766. https://doi.org/10.3390/polym11050766
Balberg I, Jedrzejewski J, Savir E (2011) Electrical transport mechanisms in three dimensional ensembles of silicon quantum dots. J Appl Phys 110:061301. https://doi.org/10.1063/1.3637636
Jiang S, Yu Y, Zeng KY (2009) Novel Ag–BaTiO3/PVDF three-component nanocomposites with high energy density and the influence of nano-Ag on the dielectric properties. Curr Appl Phys 9:956–959. https://doi.org/10.1016/j.cap.2008.09.013
Nootsuwan N, Plungpongpan K, Wattanathana W (2016) Dielectric and mechanical properties of poly(butylene succinate) thin film composites incorporated with barium strontium titanate powder. Integr Ferroelectr 174:155–166. https://doi.org/10.1080/10584587.2016.1195619