High-temperature heat capacity of erbium titanate with a pyrochlore structure

Doklady Physical Chemistry - Tập 475 - Trang 139-141 - 2017
L. T. Denisova1, A. D. Izotov2, Yu. F. Kargin3, L. G. Chumilina1, V. V. Ryabov4, V. M. Denisov1
1Siberian Federal University, Krasnoyarsk, Russia
2Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
3Baikov Institute of Metallurgy and Materials Science, Russian Academy of Sciences, Moscow, Russia
4Institute of Metallurgy, Ural Branch, Russian Academy of Sciences, Yekaterinburg, Russia

Tóm tắt

Erbium titanate with a pyrochlore structure has been synthesized by a ceramic method from stoichiometric Er2O3–TiO2 mixtures at 1673–1773 K. The high-temperature heat capacity of Er2Ti2O7 (320–1000 K) has been studied by differential scanning calorimetry. The thermodynamic functions of this oxide compound—enthalpy and entropy changes and reduced Gibbs—have been calculated from the experimental dependence C P = f(T).

Tài liệu tham khảo

Baroudi, K., Gaulin, B.D., Lapidus, S.H., Gaudet, J., and Cava, R.J., Phys. Rev. B, 2015, vol. 92, pp. 024110-1–024110-7. Shamblin, J., Tracy, C.L., Ewing, R.C., Zhang, F., and Li, W., Acta Mater., 2016, vol. 117, pp. 207–215. Cioatera, N., Voinea, E.A., Panaintescu, E., Rolle, A., Somacescu, S., Spinu, C.I., and Vannier, R.N., Ceram. Int., 2016, vol. 42, pp. 1492–1500. Zhang, L., Zhang, W., Zhu, J., Hao, Q., Xu, C., Yang, X., Lu, L., and Wang, X., J. Alloys Compd., 2009, vol. 480, pp. L45–L48. Zhang, W., Zhang, L., Zhong, H., Lu, L., Yang, X., and Wang, X., Mater. Characteriz., 2010, vol. 61, pp. 154–158. Zinchenko, V.F. Maksimenko, V.I., Sobol’, V.P., Sadkovska, L.V., Timukhin, Ye.V., and Bogatsky, A.V., CAOL Int. Conf. Adv. Optoelectr. Laser, Sevastopol, 2010, pp. 233–235. Balakrishnan, G., Petrenko, O.A., Lees, M.R., and Paul, D.McK., J. Phys.: Condens. Matter, 1998, vol. 10, pp. L723–L725. Ben Amor, N., Bejar, M., Hussein, M., Dhahri, E., Valente, M.A., and Hlil, E.K., J. Supercond. Nov. Magn., 2012, vol. 25, pp. 1035–1042. Helean, K.B., Ushakov, S.V., Brown, C.E., Navrotsky, A., Lian, J., Ewing, R.C., Farmer, J.M., and Boatner, L.A., J. Solid State Chem., 2004, vol. 177, pp. 1858–1866. Navrotsky, A., Lee, W., Mielewszyk-Gryn, A., Ushakov, S.V., Anderko, A., Wu, H., and Riman, R.E., J. Chem. Thermodyn., 2015, vol. 88, pp. 126–141. Komissarova, L.N., Shatskii, V.M., Pushkina, G.Ya., Shcherbakova, L.G., Mamsurova, L.G., and Sukhanova, G.E., Soedineniya redkozemel’nykh elementov. Karbonaty, oksalaty, nitraty, titanaty (Rare Earth Metals. Carbonates, Oxalates, Nitrates, and Titanates), M.: Nauka, 1984. Solovyov, L.A., J. Appl. Crystallogr., 2004, vol. 37, pp. 743–749. Denisova, L.T., Irtyugo, L.A., Kargin, Yu.F., Beletskii, V.V., and Denisov, V.M., Neorg. Mater., 2017, vol. 53, no. 1, pp. 71–73. Denisova, L.T., Izotov, A.D., Irtyugo, L.A., Kargin, Yu.F., Beletskii, V.V., and Denisov, V.M., Dokl. Phys. Chem., 2017. T. 472, no. 2, pp. 10–12.