High-temperature behaviour of HPC with polypropylene fibres

Cement and Concrete Research - Tập 31 Số 10 - Trang 1487-1499 - 2001
Pierre Kalifa1, Grégoire Chêne2, C. Gallé3
1Centre Scientifique et Technique du Bâtiment, 24 rue J. Fourier, F-38400 St Martin d'Hères, France
2ISBA, Groupe ESIM, Technopôle Château Gombert, F-13451 Marseilles cedex 20, France
3Commisariat à l'Energie Atomique, Bâtiment 158, F-91191 Gif sur Yvette cedex, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

K. Hertz, Heat-induced explosion of dense concretes, Institute of Building Design Report No. 166, Technical University of Denmark, 1984.

Noumowe, 1994, Effect of high temperature on high performance concrete (70–600°C) — Strength and porosity, 157

U. Diederichs, U.-M. Jumppannen, V. Penttala, Behaviour of high strength concrete at high temperatures, Espoo 1989, Report 92, Department of Structural Engineering, Helsinki University of Technology, 1992, pp. 15–26.

D.E. Allen, T.T. Lie, Fire resistance of reinforced concrete columns and walls, in: NRCC (Ed.), Proceedings of Canadian Structural Concrete Conference, Ottawa, Canada, June 1977, pp. 17–33.

Ashton, 1960, The fire-resistance of prestressed concrete beams, Proc. Inst. Civil Eng., London, 17, 15, 10.1680/iicep.1960.11684

J.-J. Jensen, E.A. Hansen, U. Danielsen, S. Seglem. Offshore concrete structures exposed to hydrocarbon fire, in: University of Edinburg (Ed.), the First International Conference on Concrete for Hazard Protection, Edinburg, UK, 1987, pp. 147–149.

Sanjayan, 1993, Spalling of high strength silica fume concrete in fire, ACI Mater. J., 90, 170

Copier, 1979, The spalling of normalweight and lightweight concrete on exposure to fire, Heron, 24, 3

Kalifa, 1998, Comportement des BHP à hautes températures, état de la question et résultats expérimentaux, Cah. CSTB, 3078

Kalifa, 2000, Spalling and pore pressure in HPC at high temperatures, Cem. Concr. Res., 30, 1, 10.1016/S0008-8846(00)00384-7

Ali, 1996, Spalling of high strength concrete at elevated temperature, Appl. Fire Sci., 6, 3, 10.2190/29U1-DTKK-42A5-DQQL

P.J.E. Sullivan, Deterioration and explosive spalling of high strength concrete at elevated temperature, in: D. Naus, Rilem Publications (Eds.), Proceedings of the International RILEM Workshop on Life Prediction and Aging Management of Concrete Structures, Cannes, France, 2000.

Ulm, 1999, The “Chunnel” fire: I. Chemoplastic softening in rapidly heated concrete, J. Eng. Mech., 125, 272, 10.1061/(ASCE)0733-9399(1999)125:3(272)

Bazant, 1996

T.Z. Harmathy, Effect of moisture on the fire endurance of building element, Research Paper No. 270, Division of Building Research, National Research Council, Ottawa, Canada, 1965.

Anderberg, 1997, Spalling phenomena of HPC and OC, 69

Breitenbücker, 1996, High strength concrete C 105 with increased fire resistance due to polypropylene fibres, 571

L. Sarvaranta, E. Jarvela, E. Mikkola, Fibre mortar composites under thermal exposure, in: Pluralis (Ed.), Proceedings of 2nd International Symposium on Textile Composites in Building Construction, Lyon, France, 23–25 June 1992, pp. 47–56.

Sarvaranta, 1994, Fibre mortar composites in fire conditions, Fire Mater., 18, 45, 10.1002/fam.810180106

Sarvaranta, 1994, Fibre mortar composites under fire conditions: Effects of ageing and moisture content of specimens, Mater. Struct., 27, 532, 10.1007/BF02473214

Nishida, 1995, Study on the properties of high strength concrete with short polypropylene fibers for spalling resistance, 2, 1141

Diederichs, 1995, High temperature properties and spalling behaviour of high strength concrete

T. Lennon, N. Clayton, Fire tests on high grade concrete with polypropylene fibres, BRE Report 395, 1999.

Kalifa, 2001, Comportement à au feu de BHP additionnés de fibres de polypropylène, Cah. CSTB

Bentz, 2000, Fibers, percolation and spalling of high performance concrete, ACI Mater. J., 97, 351

Kalifa, 1999, Mesures de pression, température et perte en masse dans les bétons à hautes températures, mise au point d'une métrologie originale, Cah. CSTB, 3154

1974

Kalifa, 1998, High performance concrete at elevated temperatures — an extensive experimental investigation on thermal, hygral and microstructure properties, 127

Tsimbrovska, 1997, High performance concrete at elevated temperature: Permeability and microstructure, 5, 475

Garboczi, 1995, Geometrical percolation threshold of overlapping ellipsoids, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top., 52, 819, 10.1103/PhysRevE.52.819

Kollek, 1989, The determination of the permeability of concrete to oxygen by the Cembureau method, a recommendation, Mater. Struct., 22, 225, 10.1007/BF02472192

Gallé, 2000, Gas permeability of unsaturated cement-based materials: Application of a multi-scale network model, Mag. Concr. Res., 52, 251, 10.1680/macr.2000.52.4.251

Klinkenberg, 1941, The determination of porous media to liquids and gases, API Drill. Prod. Pract., 200

M. Tsimbrovska, Dégradation des bétons à hautes performances soumis à des températures élevées, Thèse de doctorat, Université de Grenoble, 1998.

Katz, 1986, A quantitative prediction of permeability in porous rocks, Physical Review B: Condensed Matter and Materials Physics, 24, 8179, 10.1103/PhysRevB.34.8179

Martys, 1992, Length scale relating the fluid permeability and electrical conductivity in random two-dimensional porous media, Physical Review B: Condensed Matter and Materials Physics, 46, 6080, 10.1103/PhysRevB.46.6080

Charlaix, 1987, Permeability of a random array of fractures of widely varying apertures, Transp. Porous Media, 2, 31, 10.1007/BF00208535

Quenard, 1995, 623

Maxwell-Garnett, 1906, Philos. Trans. R. Soc. London, Ser. B, 205, 237, 10.1098/rsta.1906.0007

Bruggeman, 1935, Ann. Phys. (Leipzig), 24, 636, 10.1002/andp.19354160705

Maxwell, 1954

Hashin, 1962, A variational method of the theory of effective magnetic permeability of multiphase materials, J. Appl. Phys., 33, 3125, 10.1063/1.1728579

Kirpatrick, 1987, Classical transport in disordered media: Scaling and effective medium theories, Phys. Rev. Lett., 27, 1722, 10.1103/PhysRevLett.27.1722