High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development — properties — application
Tóm tắt
Từ khóa
Tài liệu tham khảo
Behler, F.-J., Reinders, B.-O., 1988. Mechanical twinning of Armco-iron as function of strain–rate. In: Chiem, C. Y., Kunze, H.-D., Meyer, L. W. (Eds.), Impact Loading and Dynamic Behaviour of Materials. pp. 677–683.
Cotes, 1995, Fcc/hcp martensitic transformation in the Fe-Mn system, Metall. Mat. Trans. A, 26A, 1957, 10.1007/BF02670667
Hecker, 1982, Effects of strain state and strain rate on deformation-induced transformation in 304 stainless steel, Metall. Trans. A, 13A, 619, 10.1007/BF02644427
Holden, A., Bolten, J.D., Petty, E.R., 1971. Structure and properties of iron-manganese alloys. J. Iron Steel Inst., September 721.
Hong, 1995, The effects of deformation twinning and strain-induced ε-martensite on mechanical properties of an Fe–32Mn–12Cr–0,4C cryogenic alloy, Scripta Metallurgica et Materialia, 32, 1489, 10.1016/0956-716X(95)00193-Y
Ishida, 1974, Effect of alloying elements on stability of epsilon iron, Trans. Jpn. Inst. Met., 15, 225, 10.2320/matertrans1960.15.225
Khan, 1999, Behaviors of three BCC metal over a wide range of strain rates and temperatures, Int. J. Plasticity, 15, 1089, 10.1016/S0749-6419(99)00030-3
Kim, 1985, Low temperature mechanical behavior of microalloyed and controlled-rolled Fe–Mn–Al–C–X alloys, Metall. Trans. A, 16A, 1689, 10.1007/BF02663026
Kim, 1989, Composition and temperature dependence of tensile properties of austenitic Fe–Mn–Al–C alloys, Mater. Sci. Eng. A, A114, 51, 10.1016/0921-5093(89)90844-7
Kühne, 1980, Gefüge und Festigkeitsverhalten metastabiler austenitischer Stähle, Wiss, Z. Techn. Hochsch. Magdeburg, 24, 1
Lennon, 1998, A technique for measuring the dynamic behavior of materials at high temperatures, Int. J. Plasticity, 14, 1279, 10.1016/S0749-6419(98)00056-4
Meyer, L.W. 1982. Werkstoffverhalten hochfester Stähle unter einsinnig dynamischer Belastung. Thesis, University of Dortmund.
Meyer, L. W., Kunze, H. D., Seifert, K., 1981. Dynamic behavior of high strength steels under tension. In: Meyers, M.A., Murr, L.E. (Eds.), Shock Waves and High-Strain-Rate Phenomena in Metals. p.51
Meyer, 1994, Adiabatic shear failure under biaxial dynamic compression/shear loading, Mechanics of Materials, 17, 203, 10.1016/0167-6636(94)90060-4
Nemat-Nasser, 1994, Experimental/computational evaluation of flow stress at high strain rates with application to adiabatic shear banding, Mechanics of Materials, 17, 111, 10.1016/0167-6636(94)90053-1
Sato, 1982, Hardening due to pre-existing ε-martensite in an Fe–30 Mn–1Si alloy single crystal, Acta Metall., 30, 1901, 10.1016/0001-6160(82)90030-X
Sato, 1989, Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe–Mn–Al alloys, ISIJ Int., 29, 868, 10.2355/isijinternational.29.868
Schramm, 1975, Stacking fault energies of seven commercial austenitic stainless steels, Metall. Trans. A, 6A, 1345, 10.1007/BF02641927
Schumann, 1967, Die martensitische Umwandlung in kohlenstoffarmen Manganstählen, Arch. Eisenhüttenwes, 38, 647, 10.1002/srin.196704234
Tomita, 1995, Constitution modeling of Trip steels and its application to the improvement of mechanical properties, Int. J. Mech. Sci., 12, 1295, 10.1016/0020-7403(95)00039-Z
Tomota, 1986, Microstructure dependence of iron high-manganese tensile behavior, Metall. Trans. A, 17A, 537, 10.1007/BF02643961
White, 1962, Structual changes during deformation of high-purity Fe–Mn–C alloys, J. Iron Steel Inst., 200, 457