High-speed machining tool-steel chips as an outstanding raw material for indirect additive manufacturing?

Results in Materials - Tập 11 - Trang 100207 - 2021
R.F. Santos1,2, A.R. Farinha3, R. Rocha4, C. Batista5, G. Costa Rodrigues6, M.T. Vieira3
1Department of Metallurgical and Materials Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
2LAETA/INEGI – Institute of Science and Innovation in Mechanical and Industrial Engineering, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
3CEMMPRE – Centre for Mechanical Engineering, Materials and Processes, University of Coimbra, Rua Luís Reis dos Santos, 3030-788 Coimbra, Portugal
4CEMUP – Materials Centre of the University of Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
5CDRSP – Centre for Rapid and Sustainable Product Development, Polytechnic Institute of Leiria, Rua General Norton de Matos, Apartado 4133, 2411-901 Leiria, Portugal
6Adira Metal Forming Solutions, SA, Portugal

Tài liệu tham khảo

Chinchanikar, 2015, Machining of hardened steel – experimental investigations, performance modelling and cooling techniques: a review, Int. J. Mach. Tool Manufact., 89, 95, 10.1016/j.ijmachtools.2014.11.002 Bhatta, 2021, Microstructure and mechanical properties of solid state recycled 4Cr5MoSiV (H11) steel prepared by powder metallurgy, Res. Mater., 100184 Thotakura, 2020, Structure and magnetic properties of milled maraging steel powders, Powder Technol., 360, 80, 10.1016/j.powtec.2019.09.054 Heidari, 2021, Fabrication of nanocrystalline austenitic stainless steel with superior strength and ductility via binder assisted extrusion method, Powder Technol., 379, 38, 10.1016/j.powtec.2020.10.028 Hahn, 2015, Grain-size dependent mechanical behavior of nanocrystalline metals, Mat. Sci. Eng. A-Struct., 646, 101, 10.1016/j.msea.2015.07.075 Yin, 2018, Ultrastrong nanocrystalline stainless steel and its Hall-Petch relationship in the nanoscale, Scripta Mater., 155, 26, 10.1016/j.scriptamat.2018.06.014 Godinho, 2017, In the search of nanocrystallinity in tool-steel chips, Sci. Technol. Mater., 29, e62 Ye, 2012, Cutting AISI 1045 steel at very high speeds, Int. J. Refract. Met. H., 56, 1 Duan, 2012, Adiabatic shear banding in AISI 1045 steel during high speed machining: mechanisms of microstructural evolution, Mat. Sci. Eng. A-Struct., 532, 111, 10.1016/j.msea.2011.10.071 Sherby, 2008, Revisiting the structure of martensite in iron-carbon steels, Mater. Trans., 49, 2016, 10.2320/matertrans.MRA2007338 Epicier, 2008, Crystallographic structure of vanadium carbide precipitates in a model Fe-C-V steel, Philos. Mag. A, 88, 31, 10.1080/14786430701753816 Misra, 2010, Martensite shear phase reversion-induced nanograined/ultrafine-grained Fe–16Cr–10Ni alloy: the effect of interstitial alloying elements and degree of austenite stability on phase reversion, Mat. Sci. Eng. A-Struct., 527, 7779, 10.1016/j.msea.2010.08.051 Longbottom, 2006, A review of research related to Salomon's hypothesis on cutting speeds and temperatures, Int. J. Mach. Tool Manufact., 46, 1740, 10.1016/j.ijmachtools.2005.12.001 Panov, 2020, Mechanisms of grain structure evolution in a quenched medium carbon steel during warm deformation, Crystals, 10, 1 Xiong, 2018, Cryorolling impacts on microstructure and mechanical properties of AISI 316 LN austenitic stainless steel, Mat. Sci. Eng. A-Struct., 709, 270, 10.1016/j.msea.2017.10.067 Li, 2019, Deformation behaviour and texture evolution of martensite steel subject of hard milling, Mater. Char., 156, 109881, 10.1016/j.matchar.2019.109881 Faraji, 2018